Key Points
-
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, or statins, reduce the conversion of HMG-CoA to L-mevalonate and therefore the downstream biosynthesis of cholesterol. There is increasing awareness that many of the beneficial effects of statins are mediated not through the depletion of cholesterol but through modulation of the immune system.
-
A key cholesterol-independent effect of statins is the inhibition the biosynthesis of isoprenoids that are essential for the post-translational modification and function of various important signalling proteins, including those of the small GTPase family. Many of these prenylated proteins are involved in orchestrating immune responses.
-
Statins attenuate antigen presentation to CD4+ T cells by inhibiting interferon-γ-induced MHC class II and co-stimulatory molecule expression and by interfering with antigen uptake and processing. T-cell proliferation is also impaired by statin-mediated inhibition of cytoskeletal remodelling.
-
By altering transcriptional control of T-cell differentiation statins induce a bias towards T helper 2 (TH2)-cell differentiation and away from TH1-cell differentiation.
-
Leukocyte trafficking is impaired as statins alter the expression of cell-adhesion molecules, chemokines, chemokine receptors and matrix metalloproteinases and inhibit adhesion-molecule signalling required for transvascular migration. Through their effect on cytoskeletal reorganization, statins also reduce leukocyte motility.
-
In most cases, the treatment of animal models of autoimmune disease with statins elicits an improvement in clinical outcome that can be attributed to the effects highlighted above. In the few preliminary clinical trials reported so far, there is an indication that statins confer some clinical benefit.
-
Despite several concerns, the high degree of patient tolerance and their simplicity of delivery make statins an attractive addition to currently available strategies for treating autoimmune disease.
Abstract
Statins have been prescribed extensively for their cholesterol-lowering properties and efficacy in cardiovascular disease. However, compelling evidence now exists that statins also have extensive immunomodulatory properties that operate independently of lipid lowering. Consequently, much attention has been directed towards their potential as therapeutic agents for the treatment of autoimmune disease. Modulation of post-translational protein prenylation seems to be a key mechanism by which statins alter immune function. In this Review, the effect of statin therapy on immune function, and how this relates to the pathogenesis of autoimmune disease, is reviewed alongside current opinion of what the key biological targets of statins are.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
LaRosa, J. C., He, J. & Vupputuri, S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 282, 2340–2346 (1999).
Maron, D. J., Fazio, S. & Linton, M. F. Current perspectives on statins. Circulation 101, 207–213 (2000).
Palinski, W. New evidence for beneficial effects of statins unrelated to lipid lowering. Arterioscler. Thromb. Vasc. Biol. 21, 3–5 (2001).
Wick, G., Schett, G., Amberger, A., Kleindienst, R. & Xu, Q. Is atherosclerosis an immunologically mediated disease? Immunol. Today 16, 27–33 (1995).
Ludewig, B., Zinkernagel, R. M. & Hengartner, H. Arterial inflammation and atherosclerosis. Trends Cardiovasc. Med. 12, 154–159 (2002).
Vaughan, C. J., Murphy, M. B. & Buckley, B. M. Statins do more than just lower cholesterol. Lancet 348, 1079–1082 (1996).
Zamvil, S. S. & Steinman, L. Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology 59, 970–971 (2002).
Sherer, Y. & Shoenfeld, Y. Immunomodulation for treatment and prevention of atherosclerosis. Autoimmun. Rev. 1, 21–27 (2002).
Steffens, S. & Mach, F. Anti-inflammatory properties of statins. Semin. Vasc. Med. 4, 417–422 (2004).
Gurevich, V. S., Shovman, O., Slutzky, L., Meroni, P. L. & Shoenfeld, Y. Statins and autoimmune diseases. Autoimmun. Rev. 4, 123–129 (2005).
Liao, J. K. Isoprenoids as mediators of the biological effects of statins. J. Clin. Invest. 110, 285–288 (2002).
Zhang, F. L. & Casey, P. J. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65, 241–269 (1996). Reviews 11 and 12 provide information relating to the importance of statin-mediated alterations in protein prenylation and summarize the biological importance of protein prenylation, respectively.
Takai, Y., Sasaki, T. & Matozaki, T. Small GTP-binding proteins. Physiol. Rev. 81, 153–208 (2001).
Chakrabarti, R. & Engleman, E. G. Interrelationships between mevalonate metabolism and the mitogenic signaling pathway in T lymphocyte proliferation. J. Biol. Chem. 266, 12216–12222 (1991).
Cuthbert, J. A. & Lipsky, P. E. A product of mevalonate proximal to isoprenoids is the source of both a necessary growth factor and an inhibitor of cell proliferation. Trans. Assoc. Am. Physicians 104, 97–106 (1991).
Pahan, K., Sheikh, F. G., Namboodiri, A. M. & Singh, I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J. Clin. Invest. 100, 2671–2679 (1997).
Stanislaus, R., Pahan, K., Singh, A. K. & Singh, I. Amelioration of experimental allergic encephalomyelitis in Lewis rats by lovastatin. Neurosci. Lett. 269, 71–74 (1999). This is the first report that describes the beneficial effect of statin treatment on the pathogenesis of EAE. It shows that lovastatin inhibited the expression of iNOS, TNF and IFNγ in the CNS of rats with EAE.
Stanislaus, R., Singh, A. K. & Singh, I. Lovastatin treatment decreases mononuclear cell infiltration into the CNS of Lewis rats with experimental allergic encephalomyelitis. J. Neurosci. Res. 66, 155–162 (2001).
Kwak, B., Mulhaupt, F., Myit, S. & Mach, F. Statins as a newly recognised type of immunomodulator. Nature Med. 6, 1399–1402 (2000). This is the first paper to show that statins function as direct inhibitors of IFNγ-induced MHC class II expression and therefore as repressors of T-cell activation. This effect was due to inhibition of CIITA in human endothelial cells and monocytes/macrophages.
Steinman, L., Rosenbaum, J. T., Sriram, S. & McDevitt, H. O. In vivo effects of antibodies to immune response gene products: prevention of experimental allergic encephalitis. Proc. Natl Acad. Sci. USA 78, 7111–7114 (1981).
Sriram, S. & Steinman, L. Anti I-A antibody suppresses active encephalomyelitis: treatment model for IR gene linked diseases. J. Exp. Med. 158, 1362–1367 (1983).
Waldor, M. K. et al. A. Disappearance and reappearance of B cells following in vivo treatment with monoclonal anti I-A antibodies. Proc. Natl Acad. Sci. USA 81, 2855–2858 (1984).
Zamvil, S. S. et al. Encephalitogenic T cell clones specific for myelin basic protein: an unusual bias in antigen presentation. J. Exp. Med. 162, 2107–2124 (1985).
Zamvil, S. S. & Steinman, L. The T lymphocyte in autoimmune encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).
Bottazzo, G. F., Pujol-Borrell, R., Hanafusa, T. & Feldmann, M. Role of aberrant HLA-DR expression and antigen presentation in induction of endocrine autoimmunity. Lancet 2, 1115–1119 (1983).
Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002). This was the first study to show that statins inhibit T H 1-cell development and promote T H 2-cell development and attenuate both acute and relapse phases of EAE. Crucially, they showed that adoptive transfer of T H 2 cells protected recipient mice from EAE induction.
Sadeghi, M. M. et al. Inhibition of interferon-γ-mediated microvascular endothelial cell major histocompatibility complex class II gene activation by HMG-CoA reductase inhibitors. Transplantation 71, 1262–1268 (2001).
Yilmaz, A. et al. HMG-CoA reductase inhibitors suppress maturation of human dendritic cells: new implications for atherosclerosis. Atherosclerosis 172, 85–93 (2004).
Schonbeck, U. et al. Oxidized low-density lipoprotein augments and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors limit CD40 and CD40L expression in human vascular cells. Circulation 106, 2888–2893 (2002).
Wagner, A. H., Gebauer, M., Guldenzoph, B. & Hecker, M. 3-hydroxy-3-methylglutaryl coenzyme A reductase-independent inhibition of CD40 expression by atorvastatin in human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 22, 1784–1789 (2002).
Lawman, S., Mauri, C., Jury, E. C., Cook, H. T. & Ehrenstein, M. R. Atorvastatin inhibits autoreactive B cell activation and delays lupus development in New Zealand black/white F1 mice. J. Immunol. 173, 7641–7646 (2004). The first report showing improved clinical outcome and reduced glomerular injury in experimental lupus following statin treatment. Improvement was associated with a decrease in the expression of MHC class II and co-stimulatory molecules and an attenuation of T-cell proliferation.
Nobes, C. & Marsh, M. Dendritic cells: new roles for Cdc42 and Rac in antigen uptake? Curr. Biol. 10, R739–R741 (2000).
Aktas, O. et al. Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J. Exp. Med. 197, 725–733 (2003).
Neuhaus, O. et al. Statins as immunomodulators. Comparison with interferon-β1b in MS. Neurology 59, 990–997 (2002).
Kuipers, H. F. et al. Statins affect T cell-surface expression of major histocompatibility complex class II molecules by disrupting cholesterol-containing microdomains. Hum. Immunol. 66, 653–665 (2005).
Ghittoni, R. et al. Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB J. 19, 605–607 (2005).
Dunn, S. E. et al. Isoprenoids determine Th1/Th2 fate in pathogenic T cells providing a mechanism of modulation of autoimmunity by atorvastatin. J. Exp. Med. 203, 401–412 (2006).
Greenwood, J. et al. Lovastatin inhibits brain endothelial Rho-dependent lymphocyte migration and attenuates experimental autoimmune encephalomyelitis. FASEB J. 17, 905–907 (2003). The authors of this report describe a new concept for the effect of statins on CNS autoimmune disease. They show that statins inhibit brain endothelial-cell RHO GTPase activity, which is required for successful leukocyte transvascular migration.
Stanislaus, R., Gilg, A. G., Singh, A. K. & Singh, I. Immunomodulation of experimental autoimmune encephalomyelitis in the Lewis rats by Lovastatin. Neurosci. Lett. 333, 167–170 (2002).
Nath, N., Giri, S., Prasad, R., Singh, A. K. & Singh, I. Potential targets of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor for multiple sclerosis therapy. J. Immunol. 172, 1273–1286 (2004).
Ho, I. C. & Glimcher, L. H. Transcription: tantalizing times for T cells. Cell (Suppl.) 109, S109–S120 (2002).
Murphy, K. M. & Reiner, S. L. The lineage decisions of helper T cells. Nature Rev. Immunol. 2, 933–944 (2002).
Robinson, D. S. & O'Garra, A. Further checkpoints in Th1 development. Immunity 16, 755–758 (2002).
Paintlia, A. S. et al. Regulation of gene expression associated with acute experimental autoimmune encephalomyelitis by Lovastatin. J. Neurosci. Res. 77, 63–81 (2004).
Liu, W., Li, W. M., Gao, C. & Sun, N. L. Effects of atorvastatin on the Th1/Th2 polarization of ongoing experimental autoimmune myocarditis in Lewis rats. J. Autoimmun. 25, 258–263 (2005).
Gegg, M. E. et al. Suppression of autoimmune retinal disease by lovastatin does not require Th2 cytokine induction. J. Immunol. 174, 2327–2335 (2005).
Thomas, P. B. et al. The effects of atorvastatin in experimental autoimmune uveitis. Br. J. Ophthalmol. 89, 275–279 (2005).
Leung, B. P. et al. A novel anti-inflammatory role for simvastatin in inflammatory arthritis. J. Immunol. 170, 1524–1530 (2003). The first report showing the potential of statins for treating arthritis. Using an animal model, simvastatin was shown to attenuate disease and is associated with suppression of a T H 1-cell response.
Palmer, G. et al. Assessment of the efficacy of different statins in murine collagen-induced arthritis. Arthritis Rheum. 50, 4051–4059 (2004).
Barsante, M. M. et al. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur. J. Pharmacol. 516, 282–289 (2005).
Azuma, R. W. et al. HMG-CoA reductase inhibitor attenuates experimental autoimmune myocarditis through inhibition of T cell activation. Cardiovasc. Res. 64, 412–420 (2004). The first report showing improved cardiac function in an animal model of autoimmune myocarditis following statin treatment. Improvement was associated with a decrease in T-cell infiltration and T H 1-type cytokine production and inhibition of NF-κB.
Vollmer, T. et al. Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363, 1607–1608 (2004). This article reports on a 6-month open-label study of 28 patients with relapsing-remitting multiple sclerosis in which oral simvastatin treatment (80 mg) resulted in a marked reduction in the number and volume of gadolinium-enhancing lesions.
Fournie, G. J. et al. Cellular and genetic factors involved in the difference between Brown Norway and Lewis rats to develop respectively type-2 and type-1 immune-mediated diseases. Immunol. Rev. 184, 145–160 (2001).
Sattler, M. B. et al. Simvastatin treatment does not protect retinal ganglion cells from degeneration in a rat model of autoimmune optic neuritis. Exp. Neurol. 193, 163–171 (2005).
Walters C. E. et al. Inhibition of Rho GTPases with protein prenyltransferase inhibitors prevents leukocyte recruitment to the central nervous system and attenuates clinical signs of disease in an animal model of multiple sclerosis. J. Immunol. 168, 4087–4094 (2002).
Frenkel, J. et al. Lack of isoprenoid products raises ex vivo interleukin-1β secretion in hyperimmunoglobulinemia D and periodic fever syndrome. Arthritis Rheum. 46, 2794–2803 (2002).
Houten, S. M., Frenkel, J. & Waterham, H. R. Isoprenoid biosynthesis in hereditary periodic fever syndromes and inflammation. Cell. Mol. Life Sci. 60, 1118–1134 (2003).
Weitz-Schmidt, G. et al. Statins selectively inhibit leukocyte function antigen-1 by binding to a novel regulatory integrin site. Nature Med. 7, 687–692 (2001).
Weber, C., Erl, W., Weber, K. S. & Weber, P. C. HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J. Am. Coll. Cardiol. 30, 1212–1217 (1997).
Yoshida, M. et al. HMG-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler. Thromb. Vasc. Biol. 21, 1165–1171 (2001).
Rezaie-Majd, A. et al. Simvastatin reduces the expression of adhesion molecules in circulating monocytes from hypercholesterolemic patients. Arterioscler. Thromb. Vasc. Biol. 23, 397–403 (2003).
Nubel, T., Dippold, W., Kleinert, H., Kaina, B. & Fritz, G. Lovastatin inhibits Rho-regulated expression of E-selectin by TNFα and attenuates tumor cell adhesion. FASEB J. 18, 140–142 (2004).
Sadeghi, M. M., Collinge, M., Pardi, R. & Bender, J. R. Simvastatin modulates cytokine-mediated endothelial cell adhesion molecule induction: involvement of an inhibitory G protein. J. Immunol. 165, 2712–2718 (2000).
Prasad, R., Giri, S., Nath, N., Singh, I. & Singh, A. K. Inhibition of phosphoinositide 3 kinase-Akt (protein kinase B)-nuclear factor-κ B pathway by lovastatin limits endothelial-monocyte cell interaction. J. Neurochem. 94, 204–214 (2005).
Morikawa, S. et al. The effect of statins on mRNA levels of genes related to inflammation, coagulation, and vascular constriction in HUVEC. J. Atheroscler. Thromb. 9, 178–183 (2002).
Romano, M. et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab. Invest. 80, 1095–1100 (2000).
Veillard, N. R. et al. Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis 29 Nov 2005 (doi: 10.1016/j.atherosclerosis.2005.10.015).
Charo, I. F. & Ransohoff, R. M. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610–621 (2006).
Allen, W. E., Jones, G. E., Pollard, J. W. & Ridley, A. J. Rho, Rac and Cdc42 regulate actin organization and cell adhesion in macrophages. J. Cell Sci. 110, 707–720 (1997).
Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).
Bellosta, S. et al. HMG-CoA reductase inhibitors reduce MMP-9 secretion by macrophages. Arterioscler. Thromb. Vasc. Biol. 18, 1671–1678 (1998).
Turner, N. A., O'Regan, D. J., Ball, S. G. & Porter, K. E. Simvastatin inhibits MMP-9 secretion from human saphenous vein smooth muscle cells by inhibiting the RhoA/ROCK pathway and reducing MMP-9 mRNA levels. FASEB J. 19, 804–806 (2005).
Wong, B. et al. Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation. J. Leukoc. Biol. 69, 959–962 (2001).
Ganné, F. et al. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes: a possible protective mechanism against atherothrombosis. Thromb. Haemost. 84, 680–688 (2000).
Grip, O., Janciauskiene, S. & Lindgren, S. Atorvastatin activates PPAR-γ and attenuates the inflammatory response in human monocytes. Inflamm. Res. 51, 58–62 (2002).
Kieseier, B. C., Archelos, J. J. & Hartung, H.-P. Different effects of simvastatin and interferon β on the proteolytic activity of matrix metalloproteinases. Arch. Neurol. 61, 929–932 (2004).
Greenwood, J., Etienne-Manneville, S., Adamson, P. & Couraud, P. O. Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul. Pharmacol. 38, 315–322 (2002).
Turowski, P., Adamson, P. & Greenwood, J. Pharmacological targeting of ICAM-1 signaling in brain endothelial cells: potential for treating neuroinflammation. Cell. Mol. Neurobiol. 25, 153–170 (2005).
Etienne, S. et al. ICAM-1 signaling pathways associated with rho activation in microvascular brain endothelial cells. J. Immunol. 161, 5755–5761 (1998).
Adamson, P., Etienne, S., Couraud, P.-O., Calder, V. & Greenwood, J. T-lymphocyte migration through CNS endothelial cells involves signalling through endothelial ICAM-1 via a rho dependent pathway. J. Immunol. 162, 2964–2973 (1999).
Etienne-Manneville, S. et al. ICAM-1-coupled cytoskeletal rearrangements and transendothelial lymphocyte migration involve intracellular calcium signaling in brain endothelial cell lines. J. Immunol. 165, 3375–3383 (2000).
Cook-Mills, J. M. et al. Calcium mobilization and Rac1 activation are required for VCAM-1 (vascular cell adhesion molecule-1) stimulation of NADPH oxidase activity. Biochem. J. 378, 539–547 (2004).
van Wetering, S. et al. Reactive oxygen species mediate Rac-induced loss of cell-cell adhesion in primary human endothelial cells. J. Cell Sci. 115, 1837–1846 (2002).
van Wetering, S. et al. VCAM-1-mediated Rac signaling controls endothelial cell-cell contacts and leukocyte transmigration. Am. J. Physiol., Cell Physiol. 285, C343–C352 (2003).
Wagner, A. H., Kohler, T., Ruckschloss, U., Just, I. & Hecker, M. Improvement of nitric oxide-dependent vasodilatation by HMG-CoA reductase inhibitors through attenu ation of endothelial superoxide anion formation. Arterioscler. Thromb. Vasc. Biol. 20, 61–69 (2000).
Collins, T. et al. Transcriptional regulation of endothelial cell adhesion molecules: NF-κ B and cytokine-inducible enhancers. FASEB J. 9, 899–909 (1995).
Braga, V. M., Del Maschio, A., Machesky, L. & Dejana, E. Regulation of cadherin function by Rho and Rac: modulation by junction maturation and cellular context. Mol. Biol. Cell 10, 9–22 (1999).
Stamatovic, S. M., Keep, R. F., Kunkel, S. L. & Andjelkovic, A. V. Potential role of MCP-1 in endothelial cell tight junction 'opening': signaling via Rho and Rho kinase. J. Cell Sci. 116, 4615–4628 (2003).
Bath, P. M. W., Hassall, D. G., Gladwin, A.-M., Palmer, R. M. J. & Martin, J. F. Nitric oxide and prostacyclin: divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler. Thromb. 11, 254–260 (1991).
Kubes, P., Suzuki, M. & Granger, D. N. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc. Natl Acad. Sci. USA 88, 4651–4655 (1991).
Takahashi, M. et al. Nitric oxide attenuates adhesion molecule expression in human endothelial cells. Cytokine 8, 817–821 (1996).
Spiecker, M., Peng, H. B. & Liao, J. K. Inhibition of endothelial vascular cell adhesion molecule-1 expression by nitric oxide involves the induction and nuclear translocation of IκBα. J. Biol. Chem. 272, 30969–30974 (1997).
De Caterina, R. et al. Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines. J. Clin. Invest. 96, 60–68 (1995).
Laufs, U., La Fata, V., Plutzky, J. & Liao, J. K. Upregulation of endothelial nitric oxide synthase by HMG CoA reductase inhibitors. Circulation 97, 1129–1135 (1998).
Kureishi, Y. et al. The HMG-CoA reductase inhibitor simvastatin activates the protein kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nature Med. 6, 1004–1010 (2000).
Xenos, E. S., Stevens, S. L., Freeman, M. B., Cassada, D. C. & Goldman, M. H. Nitric oxide mediates the effect of fluvastatin on intercellular adhesion molecule-1 and platelet endothelial cell adhesion molecule-1 expression on human endothelial cells. Ann. Vasc. Surg. 19, 386–392 (2005).
Hernandez-Perera, O. et al. Effects of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitors, atorvastatin and simvastatin, on the expression of endothelin-1 and endothelial nitric oxide synthase in vascular endothelial cells. J. Clin. Invest. 101, 2711–2719 (1998).
Endres, M. et al. Stroke protection by 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase inhibitors mediated by endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 95, 8880–8885 (1998).
Laufs, U. & Liao, J. K. Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J. Biol. Chem. 273, 24266–24271 (1998).
Zuckerbraun, B. S., Barbato, J. E., Hamilton, A., Sebti, S. & Tzeng, E. Inhibition of geranylgeranyl transferase I decreases generation of vascular reactive oxygen species and increases vascular nitric oxide production. J. Surg. Res. 124, 256–263 (2005).
Sena, A., Pedrosa, R. & Morais, M. G. Therapeutic potential of lovastatin in multiple sclerosis. J. Neurol. 250, 754–755 (2003).
McCarey, D. W. et al. Trial of atorvastatin in rheumatoid arthritis (TARA): double-blind, randomised placebo-controlled trial. Lancet 363, 2015–2021 (2004). A randomized 6-month double-blind placebo-controlled trial in patients with rheumatoid arthritis showing that atorvastatin had a significant effect on disease activity.
Abud-Mendoza, C. et al. Therapy with statins in patients with refractory rheumatic diseases: a preliminary study. Lupus 12, 607–611 (2003).
Mason, R. P., Walter, M. F., Day, C. A. & Jacob, R. F. Intermolecular differences of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors contribute to distinct pharmacologic and pleiotropic actions. Am. J. Cardiol. 96, 11F–23F (2005).
Stüve, O. et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J. Clin. Invest. 116, 1037–1044 (2006).
Acknowledgements
J.G. acknowledges support from The Wellcome Trust and Multiple Sclerosis Society (UK). L.S. acknowledges the support of the National Institutes of Heath, the National Multiple Sclerosis Society and the Phil N. Allen Trust. S.S.Z. is funded by the National Institutes of Heath, the National Multiple Sclerosis Society, The Dana Foundation and the Maisin Foundation.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Glossary
- Hypercholesterolaemia
-
A clinical condition in which there is abnormally high circulating levels of blood cholesterol, which can be a significant contributing factor towards cardiovascular disease.
- Low-density lipoprotein (LDL) cholesterol
-
Cholesterol is carried in the blood by proteins in the form of lipoproteins. There are five different lipoproteins, with cardiovascular risk associated with high circulating levels of LDL cholesterol.
- Prenylation
-
Prenylation (or isoprenylation) is the post-translational modification of a protein through the addition of an isoprenoid lipid; namely the 15-carbon farnesyl or 20-carbon geranylgeranyl lipid moiety derived from the cholesterol synthesis pathway.
- Lipophilicity
-
The measure of a molecules ability to dissolve in lipid (oil) as opposed to water. Lipophilic or 'lipid-loving' molecules show a preference for dissolving in lipids.
- Outside–in signalling
-
The initiation of an intracellular signalling pathway through extracellular ligand engagement of a cell-surface receptor.
- Gadolinium-enhancing lesions
-
Damaged areas (lesions) detected by magnetic resonance imaging (MRI) that have been enhanced by the intravenous administration of a contrast agent (gadolinium) to increase the sensitivity of MRI scans.
- Expanded disability status scale (EDSS) score
-
A widely used neurological and functional scoring system for judging the clinical status of people with multiple sclerosis.
- Rhabdomyolysis
-
Severe muscle toxicity resulting in the breakdown of muscle fibres. A potential side-effect of statins, either in monotherapy or in combination therapy.
Rights and permissions
About this article
Cite this article
Greenwood, J., Steinman, L. & Zamvil, S. Statin therapy and autoimmune disease: from protein prenylation to immunomodulation. Nat Rev Immunol 6, 358–370 (2006). https://doi.org/10.1038/nri1839
Issue Date:
DOI: https://doi.org/10.1038/nri1839
This article is cited by
-
An Appraisal of the Preventive Effect of Statins on the Development of Graves’ Ophthalmopathy: A Hospital-Based Cohort Study
Ophthalmology and Therapy (2024)
-
Association between HMGCR, CRP, and CETP gene polymorphisms and metabolic/inflammatory serum profile in healthy adolescents
Journal of Translational Medicine (2023)
-
Immunomodulatory effects of atorvastatin on MRL/lpr mice
Advances in Rheumatology (2022)
-
Pre-treatment and continuous administration of simvastatin during sepsis improve metabolic parameters and prevent CNS injuries in survivor rats
Molecular and Cellular Biochemistry (2022)
-
A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis
Neurology and Therapy (2022)