Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Organ-specific features of natural killer cells

A Corrigendum to this article was published on 18 November 2011

This article has been updated

Key Points

  • Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals in target organs of disease. However, the role of NK cells in regulating inflammatory responses is far from completely understood in different organs. It is often complex and sometimes paradoxical.

  • The phenotypes and functions of NK cells in the liver, mucosal tissues, uterus, pancreas, joints and brain are influenced by the unique cellular interactions and the local microenvironment within each organ.

  • Hepatic NK cells exhibit an activated phenotype with high levels of cytotoxic effector molecules. These cells have been implicated in promoting liver injury and inhibiting liver fibrosis and regeneration. The liver is also enriched in NK cells with memory-like adaptive immune features.

  • NK cells are detected in healthy lymphoid tissues of the lung, skin and gut, and are recruited to these tissues during infection or inflammation. In the gastrointestinal tract, classical NK cells and a variety of innate lymphoid cells, such as the family of lymphoid tissue-inducer (LTi) cells, are likely to have crucial roles in controlling inflammatory responses.

  • NK cells represent the major lymphocyte subset in the pregnant uterus, with a unique phenotype resembling an early developmental state. Emerging evidence indicates that these cells play a crucial part in mediating the uterine vascular adaptations to pregnancy and promoting the maintenance of healthy pregnancy.

  • In non-obese diabetic (NOD) mice, NK cells are recruited early to the pancreas, become locally activated and then adopt a hyporesponsive phenotype. Although NK cells have a pathogenic role in the natural progression of diabetes in NOD mice, they contribute to diabetes protection induced by complete Freund's adjuvant and to islet allograft tolerance induced by co-stimulatory blockade.

  • NK cells in the inflamed joint uniquely express receptor activator of NF-κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF), which promote osteoclast differentiation. Although NK cells have a pathogenic role in collagen-induced arthritis in mice, they are also crucial for protection against antibody-induced arthritis mediated by CpG oligonucleotides.

  • Studies in a mouse model of multiple sclerosis have shown that NK cells arrive in the central nervous system (CNS) before pathogenic T cells and have a protective role in the development of CNS inflammation, probably by killing CNS-resident microglia that prime effector T cells.

  • During evolution, different organs might have evolved distinct ways to recruit and influence the effector functions of NK cells. Once we understand these mechanisms, the next challenge will be to exploit this information for harnessing NK cells to develop prophylactic and therapeutic measures against infectious agents, tumours and inflammatory diseases.

Abstract

Natural killer (NK) cells can be swiftly mobilized by danger signals and are among the earliest arrivals at target organs of disease. However, the role of NK cells in mounting inflammatory responses is often complex and sometimes paradoxical. Here, we examine the divergent phenotypic and functional features of NK cells, as deduced largely from experimental mouse models of pathophysiological responses in the liver, mucosal tissues, uterus, pancreas, joints and brain. Moreover, we discuss how organ-specific factors, the local microenvironment and unique cellular interactions may influence the organ-specific properties of NK cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unique effector properties of NK cells in the liver.
Figure 2: The brain alters NK cell phenotypes and functions.

Similar content being viewed by others

Change history

  • 18 November 2011

    In the original version of this article, in the section under the subheading “CNS-specific NK cells in disease” on page 668, the humanized antibody daclizumab was incorrectly described as being specific for the IL-2 receptor β-chain (CD122). The corrected sentence now reads: “These findings might be relevant to the mode of action of daclizumab, a humanized antibody specific for the IL-2 receptor α-chain (CD25)”. The authors apologize for this error.

References

  1. Shi, F.-D. & Ransohoff, R. M. in Natural Killer Cells (eds Lotze, M. T. & Thomson, A. W.) 373–383 (Academic Press, Maryland Heights, 2010).

    Book  Google Scholar 

  2. Shi, F. D. & Van Kaer, L. Reciprocal regulation between natural killer cells and autoreactive T cells. Nature Rev. Immunol. 6, 751–760 (2006).

    Article  CAS  Google Scholar 

  3. French, A. R. & Yokoyama, W. M. Natural killer cells and autoimmunity. Arthritis Res. Ther. 6, 8–14 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Flodstrom-Tullberg, M., Bryceson, Y. T., Shi, F. D., Hoglund, P. & Ljunggren, H. G. Natural killer cells in human autoimmunity. Curr. Opin. Immunol. 21, 634–640 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Poirot, L., Benoist, C. & Mathis, D. Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc. Natl Acad. Sci. USA 101, 8102–8107 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feuerer, M., Shen, Y., Littman, D. R., Benoist, C. & Mathis, D. How punctual ablation of regulatory T cells unleashes an autoimmune lesion within the pancreatic islets. Immunity 31, 654–664 (2009). This study identifies the kinetics of NK cell recruitment to the pancreas in relation to T Reg cells, and suggests that, in the absence of T Reg cells, NK cells contribute to the destruction of islet cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Gur, C. et al. The activating receptor NKp46 is essential for the development of type 1 diabetes. Nature Immunol. 11, 121–128 (2010).

    Article  CAS  Google Scholar 

  9. Zhang, B., Yamamura, T., Kondo, T., Fujiwara, M. & Tabira, T. Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J. Exp. Med. 186, 1677–1687 (1997). This study demonstrates that removal of NK cells exacerbates the clinical presentation of EAE.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang, D. et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J. 20, 896–905 (2006). This study presents evidence that interfering with NK cell homing to the CNS dramatically alters the clinical and pathological presentation of EAE.

    Article  CAS  PubMed  Google Scholar 

  11. Hao, J. et al. Central nervous system (CNS)-resident natural killer cells suppresses Th17 responses and CNS autoimmune pathology. J. Exp. Med. 207, 1907–1921 (2010). This study reveals the mechanisms underlying the role of NK cells in regulating inflammation in the brain and identifies some unique characteristics of NK cells following homing to the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hao, J. et al. Interleukin-2/interleukin-2 antibody therapy induces target organ natural killer cells that inhibit central nervous system inflammation. Ann. Neurol. 69, 721–734 (2011). Using a human–mouse chimaera model, this study shows that the defective NK cell phenotype in the inflamed CNS can be reversed by IL-2 immune complexes that expand NK cell populations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soderstrom, K. et al. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc. Natl Acad. Sci. USA 107, 13028–13033 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Wu, H. J. et al. Inflammatory arthritis can be reined in by CpG-induced DC–NK cell cross talk. J. Exp. Med. 204, 1911–1922 (2007). References 13 and 14 reported different functions of NK cells in the spleen and joints in a mouse model of rheumatoid arthritis. Reference 13 further described specific and unique phenotypes of NK cells in the inflamed joint.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hoglund, P. & Brodin, P. Current perspectives of natural killer cell education by MHC class I molecules. Nature Rev. Immunol. 10, 724–734 (2010).

    Article  CAS  Google Scholar 

  16. Gregoire, C. et al. The trafficking of natural killer cells. Immunol. Rev. 220, 169–182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thapa, M., Kuziel, W. A. & Carr, D. J. Susceptibility of CCR5-deficient mice to genital herpes simplex virus type 2 is linked to NK cell mobilization. J. Virol. 81, 3704–3713 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang, D. et al. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J. Clin. Invest. 114, 291–299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wald, O. et al. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J. Immunol. 176, 4716–4729 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Widney, D. P. et al. CXCR3 and its ligands participate in the host response to Bordetella bronchiseptica infection of the mouse respiratory tract but are not required for clearance of bacteria from the lung. Infect. Immun. 73, 485–493 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, L. et al. Severe disease, unaltered leukocyte migration, and reduced IFN-γ production in CXCR3−/− mice with experimental autoimmune encephalomyelitis. J. Immunol. 176, 4399–4409 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Morrison, B. E., Park, S. J., Mooney, J. M. & Mehrad, B. Chemokine-mediated recruitment of NK cells is a critical host defense mechanism in invasive aspergillosis. J. Clin. Invest. 112, 1862–1870 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stiles, L. N., Hardison, J. L., Schaumburg, C. S., Whitman, L. M. & Lane, T. E. T cell antiviral effector function is not dependent on CXCL10 following murine coronavirus infection. J. Immunol. 177, 8372–8380 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Yu, Y. R. et al. Defective antitumor responses in CX3CR1-deficient mice. Int. J. Cancer. 121, 316–322 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Hamann, I. et al. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology 133, 62–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hokeness, K. L., Kuziel, W. A., Biron, C. A. & Salazar-Mather, T. P. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-α/β-induced inflammatory responses and antiviral defense in liver. J. Immunol. 174, 1549–1556 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Salazar-Mather, T. P., Orange, J. S. & Biron, C. A. Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1α (MIP-1α)-dependent pathways. J. Exp. Med. 187, 1–14 (1998). This study reveals chemokine-guided recruitment of NK cells to the liver during MCMV infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Flavell, R. A., Sanjabi, S., Wrzesinski, S. H. & Licona-Limon, P. The polarization of immune cells in the tumour environment by TGFβ. Nature Rev. Immunol. 10, 554–567 (2010).

    Article  CAS  Google Scholar 

  30. Raulet, D. H. & Guerra, N. Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nature Rev. Immunol. 9, 568–580 (2009).

    Article  CAS  Google Scholar 

  31. Cooper, M. A., Fehniger, T. A. & Caligiuri, M. A. The biology of human natural killer-cell subsets. Trends Immunol. 22, 633–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Fauriat, C., Long, E. O., Ljunggren, H. G. & Bryceson, Y. T. Regulation of human NK-cell cytokine and chemokine production by target cell recognition. Blood 115, 2167–2176 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Romagnani, C. et al. CD56brightCD16 killer Ig-like receptor NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J. Immunol. 178, 4947–4955 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Chan, A. et al. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J. Immunol. 179, 89–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Bjorkstrom, N. K. et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116, 3853–3864 (2010). A detailed study on the terminal differentiation of CD56low NK cells.

    Article  CAS  PubMed  Google Scholar 

  36. Strowig, T., Brilot, F. & Munz, C. Noncytotoxic functions of NK cells: direct pathogen restriction and assistance to adaptive immunity. J. Immunol. 180, 7785–7791 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Ferlazzo, G. et al. The interaction between NK cells and dendritic cells in bacterial infections results in rapid induction of NK cell activation and in the lysis of uninfected dendritic cells. Eur. J. Immunol. 33, 306–313 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Yu, Y. et al. Enhancement of human cord blood CD34+ cell-derived NK cell cytotoxicity by dendritic cells. J. Immunol. 166, 1590–1600 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Hayakawa, Y. & Smyth, M. J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 176, 1517–1524 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lanier, L. L. Evolutionary struggles between NK cells and viruses. Nature Rev. Immunol. 8, 259–268 (2008).

    Article  CAS  Google Scholar 

  42. Krueger, P. D., Lassen, M. G., Qiao, H. & Hahn, Y. S. Regulation of NK cell repertoire and function in the liver. Crit. Rev. Immunol. 31, 43–52 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McIntyre, K. W. & Welsh, R. M. Accumulation of natural killer and cytotoxic T large granular lymphocytes in the liver during virus infection. J. Exp. Med. 164, 1667–1681 (1986).

    Article  CAS  PubMed  Google Scholar 

  44. Lassen, M. G., Lukens, J. R., Dolina, J. S., Brown, M. G. & Hahn, Y. S. Intrahepatic IL-10 maintains NKG2A+Ly49 liver NK cells in a functionally hyporesponsive state. J. Immunol. 184, 2693–2701 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Cooper, M. A. et al. Cytokine-induced memory-like natural killer cells. Proc. Natl Acad. Sci. USA 106, 1915–1919 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, J. C., Beilke, J. N. & Lanier, L. L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cooper, M. A. & Yokoyama, W. M. Memory-like responses of natural killer cells. Immunol. Rev. 235, 297–305 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bjorkstrom, N. K. et al. Rapid expansion and long-term persistence of elevated NK cell numbers in humans infected with hantavirus. J. Exp. Med. 208, 13–21 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. O'Leary, J. G., Goodarzi, M., Drayton, D. L. & von Andrian, U. H. T cell- and B cell-independent adaptive immunity mediated by natural killer cells. Nature Immunol. 7, 507–516 (2006).

    Article  CAS  Google Scholar 

  50. Paust, S. et al. Critical role for the chemokine receptor CXCR6 in NK cell-mediated antigen-specific memory of haptens and viruses. Nature Immunol. 11, 1127–1135 (2010).

    Article  CAS  Google Scholar 

  51. Jinushi, M. et al. Natural killer cell and hepatic cell interaction via NKG2A leads to dendritic cell-mediated induction of CD4 CD25 T cells with PD-1-dependent regulatory activities. Immunology 120, 73–82 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jiang, W., Sun, R., Zhou, R., Wei, H. & Tian, Z. TLR-9 activation aggravates concanavalin A-induced hepatitis via promoting accumulation and activation of liver CD4+ NKT cells. J. Immunol. 182, 3768–3774 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Hajishengallis, G. & Lambris, J. D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 31, 154–163 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Roy, S. et al. NK cells lyse T regulatory cells that expand in response to an intracellular pathogen. J. Immunol. 180, 1729–1736 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Knolle, P. et al. Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J. Hepatol. 22, 226–229 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Friedman, S. L. Mechanisms of hepatic fibrogenesis. Gastroenterology 134, 1655–1669 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Mehal, W. & Imaeda, A. Cell death and fibrogenesis. Semin. Liver Dis. 30, 226–231 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jinushi, M. et al. Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. J. Immunol. 173, 6072–6081 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Nattermann, J. et al. Surface expression and cytolytic function of natural killer cell receptors is altered in chronic hepatitis C. Gut 55, 869–877 (2006). One of the first descriptions of NK cell phenotype in chronic liver infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Golden-Mason, L., Cox, A. L., Randall, J. A., Cheng, L. & Rosen, H. R. Increased natural killer cell cytotoxicity and NKp30 expression protects against hepatitis C virus infection in high-risk individuals and inhibits replication in vitro. Hepatology 52, 1581–1589 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Stegmann, K. A. et al. Interferon-α-induced TRAIL on natural killer cells is associated with control of hepatitis C virus infection. Gastroenterology 138, 1885–1897 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Ebert, L. M., Meuter, S. & Moser, B. Homing and function of human skin γδ T cells and NK cells: relevance for tumor surveillance. J. Immunol. 176, 4331–4336 (2006).

    Article  CAS  PubMed  Google Scholar 

  63. Ottaviani, C. et al. CD56brightCD16 NK cells accumulate in psoriatic skin in response to CXCL10 and CCL5 and exacerbate skin inflammation. Eur. J. Immunol. 36, 118–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Small, C. L. et al. NK cells play a critical protective role in host defense against acute extracellular Staphylococcus aureus bacterial infection in the lung. J. Immunol. 180, 5558–5568 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Reynders, A. et al. Identity, regulation and in vivo function of gut NKp46+RORγt+ and NKp46+RORγt lymphoid cells. EMBO J. 30, 2934–2947 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Halim, T. Y. F. & Fumio, T. NK cell development from a novel progenitor found in the murine lung. J. Immunol. 182, 138.10 (2009).

    Google Scholar 

  67. Vonarbourg, C. et al. Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33, 736–751 (2010). One of a series of recent studies describing features of new subsets of innate lymphocytes other than classical NK cells and NKT cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Rev. Immunol. 10, 131–144 (2010).

    Article  CAS  Google Scholar 

  69. Guo, H. & Topham, D. J. Interleukin-22 (IL-22) production by pulmonary natural killer cells and the potential role of IL-22 during primary influenza virus infection. J. Virol. 84, 7750–7759 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wilson, M. S. et al. Redundant and pathogenic roles for IL-22 in mycobacterial, protozoan, and helminth infections. J. Immunol. 184, 4378–4390 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Moffett, A. & Loke, C. Immunology of placentation in eutherian mammals. Nature Rev. Immunol. 6, 584–594 (2006).

    Article  CAS  Google Scholar 

  72. Colucci, F., Boulenouar, S., Kieckbusch, J. & Moffett, A. How does variability of immune system genes affect placentation? Placenta 32, 39–45 (2011).

    Article  CAS  Google Scholar 

  73. Croy, B. A., van den Heuvel, M. J., Borzychowski, A. M. & Tayade, C. Uterine natural killer cells: a specialized differentiation regulated by ovarian hormones. Immunol. Rev. 214, 161–185 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Huntington, N. D., Vosshenrich, C. A. & Di Santo, J. P. Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nature Rev. Immunol. 9, 703–714 (2007).

    Article  CAS  Google Scholar 

  75. Moffett-King, A. Natural killer cells and pregnancy. Nature Rev. Immunol. 9, 656–663 (2002).

    Article  CAS  Google Scholar 

  76. Yadi, H. et al. Unique receptor repertoire in mouse uterine NK cells. J. Immunol. 181, 6140–6147 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Male, V. et al. Immature NK cells, capable of producing IL-22, are present in human uterine mucosa. J. Immunol. 185, 3913–3918 (2010).

    Article  CAS  PubMed  Google Scholar 

  78. Ashkar, A. A., Di Santo, J. P. & Croy, B. A. Interferon γ contributes to initiation of uterine vascular modification, decidual integrity, and uterine natural killer cell maturation during normal murine pregnancy. J. Exp. Med. 192, 259–270 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hanna, J. et al. Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nature Med. 12, 1065–1074 (2006). This study describes the role of host NK cells in regulating pregnancy through interactions with fetal trophoblast cells.

    Article  CAS  PubMed  Google Scholar 

  80. Sharkey, A. M. et al. Killer Ig-like receptor expression in uterine NK cells is biased toward recognition of HLA-C and alters with gestational age. J. Immunol. 181, 39–46 (2008).

    Article  CAS  PubMed  Google Scholar 

  81. Keskin, D. B. et al. TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16 NK cells with similarities to decidual NK cells. Proc. Natl Acad. Sci. USA 104, 3378–3383 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hanna, J. et al. CXCL12 expression by invasive trophoblasts induces the specific migration of CD16 human natural killer cells. Blood 102, 1569–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Hiby, S. E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hiby, S. E. et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J. Clin. Invest. 120, 4102–4110 (2010). An elegant study on the role of KIRs in controlling the outcome of human pregnancy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Brauner, H. et al. Distinct phenotype and function of NK cells in the pancreas of nonobese diabetic mice. J. Immunol. 184, 2272–2280 (2010). This study comprehensively analysed NK cell immune phenotypes in the pancreas during successive stages of diabetes in NOD mice.

    Article  CAS  PubMed  Google Scholar 

  86. Alba, A. et al. Natural killer cells are required for accelerated type 1 diabetes driven by interferon-β. Clin. Exp. Immunol. 151, 467–475 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu, R. et al. Autoreactive T cells mediate NK cell degeneration in autoimmune disease. J. Immunol. 176, 5247–5254 (2006).

    Article  CAS  PubMed  Google Scholar 

  88. Ansari, M. J. et al. The programmed death-1 (PD-1) pathway regulates autoimmune diabetes in nonobese diabetic (NOD) mice. J. Exp. Med. 198, 63–69 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Flodstrom, M. et al. Target cell defense prevents the development of diabetes after viral infection. Nature Immunol. 3, 373–382 (2002).

    Article  CAS  Google Scholar 

  90. Lee, I. F., Qin, H., Trudeau, J., Dutz, J. & Tan, R. Regulation of autoimmune diabetes by complete Freund's adjuvant is mediated by NK cells. J. Immunol. 172, 937–942 (2004).

    Article  CAS  PubMed  Google Scholar 

  91. Beilke, J. N., Kuhl, N. R., Van Kaer, L. & Gill, R. G. NK cells promote islet allograft tolerance via a perforin-dependent mechanism. Nature Med. 11, 1059–1065 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Tak, P. P. et al. Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum. 37, 1735–1743 (1994).

    Article  CAS  PubMed  Google Scholar 

  93. Mack, M. et al. Predominance of mononuclear cells expressing the chemokine receptor CCR5 in synovial effusions of patients with different forms of arthritis. Arthritis Rheum. 42, 981–988 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Iwamoto, T., Okamoto, H., Toyama, Y. & Momohara, S. Molecular aspects of rheumatoid arthritis: chemokines in the joints of patients. FEBS J. 275, 4448–4455 (2008).

    Article  CAS  PubMed  Google Scholar 

  95. Dalbeth, N. et al. CD56bright NK cells are enriched at inflammatory sites and can engage with monocytes in a reciprocal program of activation. J. Immunol. 173, 6418–6426 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Zhang, A. L. et al. Natural killer cells trigger differentiation of monocytes into dendritic cells. Blood 110, 2484–2493 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Romas, E., Gillespie, M. T. & Martin, T. J. Involvement of receptor activator of NFκB ligand and tumor necrosis factor-α in bone destruction in rheumatoid arthritis. Bone 30, 340–346 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Lubberts, E. et al. Increase in expression of receptor activator of nuclear factor κB at sites of bone erosion correlates with progression of inflammation in evolving collagen-induced arthritis. Arthritis Rheum. 46, 3055–3064 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Geusens, P. P. et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum. 54, 1772–1777 (2006).

    Article  CAS  PubMed  Google Scholar 

  100. Redzic, Z. Molecular biology of the blood–brain and the blood–cerebrospinal fluid barriers: similarities and differences. Fluids Barriers CNS 8, 3 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Trifilo, M. J. et al. CXC chemokine ligand 10 controls viral infection in the central nervous system: evidence for a role in innate immune response through recruitment and activation of natural killer cells. J. Virol. 78, 585–594 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Alsharifi, M. et al. NK cell-mediated immunopathology during an acute viral infection of the CNS. Eur. J. Immunol. 36, 887–896 (2006).

    Article  CAS  PubMed  Google Scholar 

  103. Hayashi, T. et al. Critical roles of NK and CD8+ T cells in central nervous system listeriosis. J. Immunol. 182, 6360–6368 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Alizadeh, D. et al. Induction of anti-glioma natural killer cell response following multiple low-dose intracerebral CpG therapy. Clin. Cancer Res. 16, 3399–3408 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lunemann, A. et al. Human NK cells kill resting but not activated microglia via NKG2D- and NKp46-mediated recognition. J. Immunol. 181, 6170–6177 (2008).

    Article  CAS  PubMed  Google Scholar 

  106. Ponomarev, E. D. et al. GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J. Immunol. 178, 39–48 (2007).

    Article  CAS  PubMed  Google Scholar 

  107. Biber, K., Neumann, H., Inoue, K. & Boddeke, H. W. Neuronal 'on' and 'off' signals control microglia. Trends Neurosci. 30, 596–602 (2007).

    Article  CAS  PubMed  Google Scholar 

  108. Hanisch, U. K. & Kettenmann, H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nature Neurosci. 10, 1387–1394 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. Farina, C., Aloisi, F. & Meinl, E. Astrocytes are active players in cerebral innate immunity. Trends Immunol. 28, 138–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Ponomarev, E. D., Shriver, L. P., Maresz, K. & Dittel, B. N. Microglial cell activation and proliferation precedes the onset of CNS autoimmunity. J. Neurosci. Res. 81, 374–389 (2005). References 106 and 110 provide evidence that microglia can sense inflammatory signals from the periphery and become activated prior to T cell arrival into the brain.

    Article  CAS  PubMed  Google Scholar 

  111. Bhat, R. & Steinman, L. Innate and adaptive autoimmunity directed to the central nervous system. Neuron 64, 123–132 (2009).

    Article  CAS  PubMed  Google Scholar 

  112. Rose, J. W., Watt, H. E., White, A. T. & Carlson, N. G. Treatment of multiple sclerosis with an anti-interleukin-2 receptor monoclonal antibody. Ann. Neurol. 56, 864–867 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Rose, J. W. et al. Daclizumab phase II trial in relapsing and remitting multiple sclerosis: MRI and clinical results. Neurology 69, 785–789 (2007).

    Article  CAS  PubMed  Google Scholar 

  114. Bielekova, B. et al. Regulatory CD56bright natural killer cells mediate immunomodulatory effects of IL-2Rα-targeted therapy (daclizumab) in multiple sclerosis. Proc. Natl Acad. Sci. USA 103, 5941–5946 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bielekova, B. et al. Effect of anti-CD25 antibody daclizumab in the inhibition of inflammation and stabilization of disease progression in multiple sclerosis. Arch. Neurol. 66, 483–489 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Vandenbark, A. A. et al. Interferon-β-1a treatment increases CD56bright natural killer cells and CD4+CD25+ Foxp3 expression in subjects with multiple sclerosis. J. Neuroimmunol. 215, 125–128 (2009).

    Article  CAS  PubMed  Google Scholar 

  117. Sand, K. L., Knudsen, E., Rolin, J., Al-Falahi, Y. & Maghazachi, A. A. Modulation of natural killer cell cytotoxicity and cytokine release by the drug glatiramer acetate. Cell. Mol. Life Sci. 66, 1446–1456 (2009). References 116 and 117 suggest that IFNs and glatiramer acetate may achieve their therapeutic efficacy, at least in part, by activating NK cells.

    Article  CAS  PubMed  Google Scholar 

  118. Paya, C. V., Patick, A. K., Leibson, P. J. & Rodriguez, M. Role of natural killer cells as immune effectors in encephalitis and demyelination induced by Theiler's virus. J. Immunol. 143, 95–102 (1989).

    CAS  PubMed  Google Scholar 

  119. Bartholomaus, I. et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462, 94–98 (2009).

    Article  CAS  PubMed  Google Scholar 

  120. Fan, Z. et al. In vivo tracking of 'color-coded' effector, natural and induced regulatory T cells in the allograft response. Nature Med. 16, 718–722 (2010).

    Article  CAS  PubMed  Google Scholar 

  121. Siffrin, V. et al. In vivo imaging of partially reversible Th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. Immunity 33, 424–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Bajenoff, M. et al. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203, 619–631 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chen, Q., Khoury, M. & Chen, J. Expression of human cytokines dramatically improves reconstitution of specific human-blood lineage in humanized mice. Proc. Natl Acad. Sci. USA 106, 21783–21788 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Spits, H. & Di Santo, J. P. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nature Immunol. 12, 21–27 (2011).

    Article  CAS  Google Scholar 

  125. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nature Immunol. 8, 1337–1344 (2007).

    Article  CAS  Google Scholar 

  126. Tu, Z. et al. TLR-dependent cross talk between human Kupffer cells and NK cells. J. Exp. Med. 205, 233–244 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bluestone, J. A., Herold, K. & Eisenbarth, G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464, 1293–1300 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sternberg, E. M. Neural regulation of innate immunity: a coordinated nonspecific host response to pathogens. Nature Rev. Immunol. 6, 318–328 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank present and past members of our laboratories for their contributions towards the understanding of NK cells in health and disease. We also thank Z. Tian, N. Björkström and Z. Tu for fruitful discussions and advice, and R. Liu, Y. Gan and S. Shi for assistance in preparing the manuscript. The authors' clinical and laboratory programmes are supported by the National Science Foundation of China (31170864 to F.-D.S.), the US Muscular Dystrophy Association (159281 to F.-D.S.), the Arizona Biomedical Research Commission (09-085 to F.-D.S.), the US National Institutes of Health (RO1AI083294 to F.-D.S.; RO1AR53295 to A.L.C.; and RO1AI070305, R21AI072417, RO1DK081536 and RO1HL089667 to L.V.K.), the Swedish Research Council (H.-G.L.), the Swedish Cancer Society (H.-G.L.), the Tobias Foundation (H.-G.L.), the Karolinska Institutet (H.-G.L.), and the Stockholm County Council (H.-G.L.). We apologize to those colleagues whose work has not been cited owing to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Dong Shi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Fu-Dong Shi's homepages

Luc Van Kaer's homepage

Glossary

Natural killer cells

(NK cells). Cytotoxic lymphocytes of the innate immune system. These cells have an important role in host defence against many intracellular pathogens and some tumours, regulate the development of adaptive immunity, and control the homeostasis of other immune cells. Human NK cells express the surface marker CD56, and mouse NK cells express the surface markers DX5 (CD49b) and, in some mouse strains (for example, C57BL/6), NK1.1 (CD161).

Type 1 diabetes

A form of diabetes caused by autoimmune destruction of insulin-producing pancreatic β-cells. Autoimmune destruction is predominantly mediated by CD8+ T cells, but natural killer cells may affect disease outcome.

Rheumatoid arthritis

A systemic inflammatory disorder that may affect many tissues and organs, but principally attacks synovial joints. The disease process produces an inflammatory response of the synovium (synovitis), secondary to hyperplasia of synovial cells, excess synovial fluid and the development of pannus in the synovium. The pathology of the disease process often leads to the destruction of articular cartilage and ankylosis of the joints.

Kupffer cell

Also known as Browicz–Kupffer cells, Kupffer cells are specialized macrophages that line the walls of the liver sinusoids.

Natural killer T cells

(NKT cells). A subset of T cells that are specific for lipid or glycolipid antigens bound to the MHC class I-related protein CD1d. Most NKT cells, which are referred to as type I or invariant NKT (iNKT) cells, express an invariant T cell receptor-α chain (Vα14–Jα18 in mice or Vα24–Jα18 in humans) together with various natural killer cell surface markers, such as NK1.1. NKT cells have a regulatory role during an immune response, bridging the innate and adaptive immune systems. iNKT cells can be most easily identified with multimeric CD1d molecules loaded with iNKT cell agonists, such as α-galactosylceramide.

Trophoblast layer

A layer formed by trophoblast cells that arise from the trophectoderm that surrounds the blastocyst. The trophoblast layer attaches the embryo to the uterus and forms a part of the placenta.

Collagen-induced arthritis

A model for human rheumatoid arthritis that is induced in susceptible strains of mice or rats by immunization with autologous or heterologous type II collagen in adjuvant.

K/BxN mice

K/BxN mice express a transgene-encoded T cell receptor that is specific for the ubiquitously expressed enzyme glucose-6-phosphate isomerase, which is presented by the MHC class II molecule H2-Ag7. These mice spontaneously develop joint inflammation with features of human rheumatoid arthritis. Interestingly, transfer of serum from arthritic animals into healthy non-transgenic animals induces arthritis in a highly reproducible and controlled manner.

Microglia

Non-neuronal cells of the central nervous system with phagocytic properties. They are haematopoietic cells and are involved in inflammatory and immune responses in the central nervous system.

Experimental autoimmune encephalomyelitis

(EAE). An experimental model for human multiple sclerosis that can be induced in susceptible animals by immunization with neuroantigens and adjuvant.

Multiple sclerosis

An inflammatory and demyelinating disease of the central nervous system that is primarily diagnosed in young adults. Clinical presentations are heterogeneous depending on the severity and location of central nervous system lesions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, FD., Ljunggren, HG., La Cava, A. et al. Organ-specific features of natural killer cells. Nat Rev Immunol 11, 658–671 (2011). https://doi.org/10.1038/nri3065

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3065

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing