Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulating the adaptive immune response to respiratory virus infection

Key Points

  • The respiratory tract is a major portal of entry for viruses into the body. Infection of the respiratory tract can, if severe, induce life-threatening damage to the lungs. Various strategies to control virus replication and to limit immune-mediated inflammation and tissue injury have evolved in the respiratory tract.

  • Multiple innate immune cell types, particularly dendritic cells (DCs), within the pulmonary interstitium and between airway epithelial cells are strategically poised to recognize and sample airway particulates, such as viruses.

  • In response to respiratory virus infection, several distinct DC subsets are stimulated to migrate from the site of infection in the lungs to the draining lymph nodes. Here, these migrant DCs have a crucial role in initiating the antivirus adaptive immune response to the invading viruses.

  • After entering the infected lungs, effector T cells that were generated in the lymph nodes undergo further modifications that are shaped by the inflammatory milieu.

  • Co-stimulatory receptor–ligand interactions between effector T cells and various cell types presenting viral antigens in the infected lungs modulate the host adaptive immune response in situ.

  • Effector T cells that produce pro-inflammatory mediators are also the major producers of regulatory (anti-inflammatory) cytokines, providing a fine-tuning mechanism of self-control by effector T cells responding to viruses in the inflamed tissue.

  • The immune mechanisms that control virus replication and/or excessive inflammation in the virus-infected lungs can also predispose the individual recovering from a virus infection to bacterial superinfection. Therapeutic strategies should consider balancing the need to inhibit virus replication and excessive inflammation with the need to optimize the antibacterial functions of innate immune phagocytes, which are crucial for clearing the bacteria from the lungs.

Abstract

Recent years have seen several advances in our understanding of immunity to virus infection of the lower respiratory tract, including to influenza virus infection. Here, we review the cellular targets of viruses and the features of the host immune response that are unique to the lungs. We describe the interplay between innate and adaptive immune cells in the induction, expression and control of antiviral immunity, and discuss the impact of the infected lung milieu on moulding the response of antiviral effector T cells. Recent findings on the mechanisms that underlie the increased frequency of severe pulmonary bacterial infections following respiratory virus infection are also discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Innate immunity to respiratory virus infection.
Figure 2: Regulatory mechanisms in the lung during respiratory virus infection.
Figure 3: Respiratory virus infection and susceptibility to secondary bacterial infection.

Similar content being viewed by others

References

  1. Chen, Y. et al. A novel subset of putative stem/progenitor CD34+Oct-4+ cells is the major target for SARS coronavirus in human lung. J. Exp. Med. 204, 2529–2536 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mallick, B., Ghosh, Z. & Chakrabarti, J. MicroRNome analysis unravels the molecular basis of SARS infection in bronchoalveolar stem cells. PLoS ONE 4, e7837 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shinya, K. et al. Avian flu: influenza virus receptors in the human airway. Nature 440, 435–436 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Yamada, S. et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature 444, 378–382 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Khatri, M., O'Brien, T. D., Goyal, S. M. & Sharma, J. M. Isolation and characterization of chicken lung mesenchymal stromal cells and their susceptibility to avian influenza virus. Dev. Comp. Immunol. 34, 474–479 (2010).

    Article  CAS  PubMed  Google Scholar 

  6. McGill, J., Heusel, J. W. & Legge, K. L. Innate immune control and regulation of influenza virus infections. J. Leukoc. Biol. 86, 803–812 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pang, I. K. & Iwasaki, A. Inflammasomes as mediators of immunity against influenza virus. Trends Immunol. 32, 34–41 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Takeuchi, O. & Akira, S. Innate immunity to virus infection. Immunol. Rev. 227, 75–86 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holt, P. G., Strickland, D. H., Wikstrom, M. E. & Jahnsen, F. L. Regulation of immunological homeostasis in the respiratory tract. Nature Rev. Immunol. 8, 142–152 (2008).

    Article  CAS  Google Scholar 

  10. Waffarn, E. E. & Baumgarth, N. Protective B cell responses to flu — no fluke! J. Immunol. 186, 3823–3829 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Snelgrove, R. J. et al. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nature Immunol. 9, 1074–1083 (2008). This paper shows that CD200R is crucial for lung macrophage immune homeostasis in the resting state and limits the amplitude and duration of the inflammatory response during pulmonary influenza virus infection.

    Article  CAS  Google Scholar 

  12. Kirby, A. C., Coles, M. C. & Kaye, P. M. Alveolar macrophages transport pathogens to lung draining lymph nodes. J. Immunol. 183, 1983–1989 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Plantinga, M., Hammad, H. & Lambrecht, B. N. Origin and functional specializations of DC subsets in the lung. Eur. J. Immunol. 40, 2112–2118 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Kim, T. S. & Braciale, T. J. Respiratory dendritic cell subsets differ in their capacity to support the induction of virus-specific cytotoxic CD8+ T cell responses. PLoS ONE 4, e4204 (2009). This paper demonstrates that different subsets of migratory respiratory DCs differ in their efficiency at presenting virus-derived antigens to naive CD4+ and CD8+ T cells in the draining nodes in response to respiratory virus infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. del Rio, M. L., Rodriguez-Barbosa, J. I., Kremmer, E. & Forster, R. CD103 and CD103+ bronchial lymph node dendritic cells are specialized in presenting and cross-presenting innocuous antigen to CD4+ and CD8+ T cells. J. Immunol. 178, 6861–6866 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Sung, S. S. et al. A major lung CD103 (αE)-β7 integrin-positive epithelial dendritic cell population expressing Langerin and tight junction proteins. J. Immunol. 176, 2161–2172 (2006). This paper provides the first evidence that CD103+ and CD11bhi respiratory DCs are the major DC populations in the lung.

    Article  CAS  PubMed  Google Scholar 

  17. GeurtsvanKessel, C. H. et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b but not plasmacytoid dendritic cells. J. Exp. Med. 205, 1621–1634 (2008). This paper demonstrates that langerin+CD11b migratory respiratory DCs are required for efficient CD8+ T cell activation and for virus clearance in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bursch, L. S. et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204, 3147–3156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Helft, J., Ginhoux, F., Bogunovic, M. & Merad, M. Origin and functional heterogeneity of non-lymphoid tissue dendritic cells in mice. Immunol. Rev. 234, 55–75 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Edelson, B. T. et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J. Exp. Med. 207, 823–836 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ginhoux, F. et al. The origin and development of nonlymphoid tissue CD103+ DCs. J. Exp. Med. 206, 3115–3130 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Beaty, S. R., Rose, C. E. Jr & Sung, S. S. Diverse and potent chemokine production by lung CD11bhigh dendritic cells in homeostasis and in allergic lung inflammation. J. Immunol. 178, 1882–1895 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Jakubzick, C. et al. Blood monocyte subsets differentially give rise to CD103+ and CD103 pulmonary dendritic cell populations. J. Immunol. 180, 3019–3027 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Lin, K. L., Suzuki, Y., Nakano, H., Ramsburg, E. & Gunn, M. D. CCR2+ monocyte-derived dendritic cells and exudate macrophages produce influenza-induced pulmonary immune pathology and mortality. J. Immunol. 180, 2562–2572 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Aldridge, J. R. Jr et al. TNF/iNOS-producing dendritic cells are the necessary evil of lethal influenza virus infection. Proc. Natl Acad. Sci. USA 106, 5306–5311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jenkins, S. J. et al. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332, 1284–1288 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hammad, H. & Lambrecht, B. N. Dendritic cells and epithelial cells: linking innate and adaptive immunity in asthma. Nature Rev. Immunol. 8, 193–204 (2008).

    Article  CAS  Google Scholar 

  28. Kitamura, H. et al. Mouse and human lung fibroblasts regulate dendritic cell trafficking, airway inflammation, and fibrosis through integrin αvβ8-mediated activation of TGF-β. J. Clin. Invest. 121, 2863–2875 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hammad, H. et al. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nature Med. 15, 410–416 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Marsolais, D. et al. Local not systemic modulation of dendritic cell S1P receptors in lung blunts virus-specific immune responses to influenza. Mol. Pharmacol. 74, 896–903 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Jakubzick, C., Tacke, F., Llodra, J., van Rooijen, N. & Randolph, G. J. Modulation of dendritic cell trafficking to and from the airways. J. Immunol. 176, 3578–3584 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Lawrence, C. W. & Braciale, T. J. Activation, differentiation, and migration of naive virus-specific CD8+ T cells during pulmonary influenza virus infection. J. Immunol. 173, 1209–1218 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Yoon, H., Legge, K. L., Sung, S. S. & Braciale, T. J. Sequential activation of CD8+ T cells in the draining lymph nodes in response to pulmonary virus infection. J. Immunol. 179, 391–399 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Khanna, K. M. et al. In situ imaging reveals different responses by naive and memory CD8 T cells to late antigen presentation by lymph node DC after influenza virus infection. Eur. J. Immunol. 38, 3304–3315 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim, T. S., Hufford, M. M., Sun, J., Fu, Y. X. & Braciale, T. J. Antigen persistence and the control of local T cell memory by migrant respiratory dendritic cells after acute virus infection. J. Exp. Med. 207, 1161–1172 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belz, G. T. et al. Distinct migrating and nonmigrating dendritic cell populations are involved in MHC class I-restricted antigen presentation after lung infection with virus. Proc. Natl Acad. Sci. USA 101, 8670–8675 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lukens, M. V., Kruijsen, D., Coenjaerts, F. E., Kimpen, J. L. & van Bleek, G. M. Respiratory syncytial virus-induced activation and migration of respiratory dendritic cells and subsequent antigen presentation in the lung-draining lymph node. J. Virol. 83, 7235–7243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Beauchamp, N. M., Busick, R. Y. & Alexander-Miller, M. A. Functional divergence among CD103+ dendritic cell subpopulations following pulmonary poxvirus infection. J. Virol. 84, 10191–10199 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tournier, J. N. & Mohamadzadeh, M. Key roles of dendritic cells in lung infection and improving anthrax vaccines. Trends Mol. Med. 16, 303–312 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Ballesteros-Tato, A., Leon, B., Lund, F. E. & Randall, T. D. Temporal changes in dendritic cell subsets, cross-priming and costimulation via CD70 control CD8+ T cell responses to influenza. Nature Immunol. 11, 216–224 (2010). This paper shows that CD11bhi migratory respiratory DCs dominate antigen presentation at the peak of infection.

    Article  CAS  Google Scholar 

  41. Moltedo, B., Li, W., Yount, J. S. & Moran, T. M. Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog. 7, e1002345 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Desch, A. N. et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell-associated antigen. J. Exp. Med. 208, 1789–1797 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ho, A. W. et al. Lung CD103+ dendritic cells efficiently transport influenza virus to the lymph node and load viral antigen onto MHC class I for presentation to CD8 T cells. J. Immunol. 187, 6011–6021 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Nakano, H. et al. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nature Immunol. 10, 394–402 (2009).

    Article  CAS  Google Scholar 

  45. Zammit, D. J., Turner, D. L., Klonowski, K. D., Lefrancois, L. & Cauley, L. S. Residual antigen presentation after influenza virus infection affects CD8 T cell activation and migration. Immunity 24, 439–449 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Takamura, S. et al. The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen. J. Exp. Med. 207, 1153–1160 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jelley-Gibbs, D. M. et al. Unexpected prolonged presentation of influenza antigens promotes CD4 T cell memory generation. J. Exp. Med. 202, 697–706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brincks, E. L., Katewa, A., Kucaba, T. A., Griffith, T. S. & Legge, K. L. CD8 T cells utilize TRAIL to control influenza virus infection. J. Immunol. 181, 4918–4925 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Hufford, M. M., Kim, T. S., Sun, J. & Braciale, T. J. Antiviral CD8+ T cell effector activities in situ are regulated by target cell type. J. Exp. Med. 208, 167–180 (2011). This study demonstrates that the expression of cytotoxic T lymphocyte effector activity at the site of virus infection is dictated by the type of target cell encountered.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Topham, D. J., Tripp, R. A. & Doherty, P. C. CD8+ T cells clear influenza virus by perforin or Fas-dependent processes. J. Immunol. 159, 5197–5200 (1997).

    CAS  PubMed  Google Scholar 

  51. Graham, M. B. et al. Response to influenza infection in mice with a targeted disruption in the interferon γ gene. J. Exp. Med. 178, 1725–1732 (1993).

    Article  CAS  PubMed  Google Scholar 

  52. Cook, D. N. et al. Requirement of MIP-1 α for an inflammatory response to viral infection. Science 269, 1583–1585 (1995).

    Article  CAS  PubMed  Google Scholar 

  53. Peper, R. L. & Van Campen, H. Tumor necrosis factor as a mediator of inflammation in influenza A viral pneumonia. Microb. Pathog. 19, 175–183 (1995).

    Article  CAS  PubMed  Google Scholar 

  54. Herold, S. et al. Lung epithelial apoptosis in influenza virus pneumonia: the role of macrophage-expressed TNF-related apoptosis-inducing ligand. J. Exp. Med. 205, 3065–3077 (2008). This paper identifies epithelial cell apoptosis induced by TRAIL-expressing macrophages as a major mechanism by which macrophages that are recruited to the lung induce alveolar leakage and enhance mortality associated with influenza virus pneumonia.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brown, D. M., Dilzer, A. M., Meents, D. L. & Swain, S. L. CD4 T cell-mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 177, 2888–2898 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Graham, M. B., Braciale, V. L. & Braciale, T. J. Influenza virus-specific CD4+ T helper type 2 T lymphocytes do not promote recovery from experimental virus infection. J. Exp. Med. 180, 1273–1282 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Debbabi, H. et al. Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T cells. Am. J. Physiol. Lung Cell. Mol. Physiol. 289, L274–L279 (2005).

    Article  CAS  PubMed  Google Scholar 

  58. Topham, D. J. & Doherty, P. C. Clearance of an influenza A virus by CD4+ T cells is inefficient in the absence of B cells. J. Virol. 72, 882–885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Topham, D. J., Tripp, R. A., Hamilton-Easton, A. M., Sarawar, S. R. & Doherty, P. C. Quantitative analysis of the influenza virus-specific CD4+ T cell memory in the absence of B cells and Ig. J. Immunol. 157, 2947–2952 (1996).

    CAS  PubMed  Google Scholar 

  60. Lawrence, C. W., Ream, R. M. & Braciale, T. J. Frequency, specificity, and sites of expansion of CD8+ T cells during primary pulmonary influenza virus infection. J. Immunol. 174, 5332–5340 (2005).

    Article  CAS  PubMed  Google Scholar 

  61. McGill, J. & Legge, K. L. Cutting edge: contribution of lung-resident T cell proliferation to the overall magnitude of the antigen-specific CD8 T cell response in the lungs following murine influenza virus infection. J. Immunol. 183, 4177–4181 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Hendriks, J., Xiao, Y. & Borst, J. CD27 promotes survival of activated T cells and complements CD28 in generation and establishment of the effector T cell pool. J. Exp. Med. 198, 1369–1380 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. McGill, J., Van Rooijen, N. & Legge, K. L. IL-15 trans-presentation by pulmonary dendritic cells promotes effector CD8 T cell survival during influenza virus infection. J. Exp. Med. 207, 521–534 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. van Gisbergen, K. P. et al. The costimulatory molecule CD27 maintains clonally diverse CD8+ T cell responses of low antigen affinity to protect against viral variants. Immunity 35, 97–108 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Sun, J., Madan, R., Karp, C. L. & Braciale, T. J. Effector T cells control lung inflammation during acute influenza virus infection by producing IL-10. Nature Med. 15, 277–284 (2009). This study demonstrates that effector T cells (in particular, effector CD8+ T cells) can regulate inflammation at the site of infection by producing IL-10 in response to influenza virus infection.

    Article  CAS  PubMed  Google Scholar 

  66. Sun, J., Dodd, H., Moser, E. K., Sharma, R. & Braciale, T. J. CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nature Immunol. 12, 327–334 (2011).

    Article  CAS  Google Scholar 

  67. Cretney, E. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nature Immunol. 12, 304–311 (2011).

    Article  CAS  Google Scholar 

  68. Valitutti, S., Muller, S., Dessing, M. & Lanzavecchia, A. Different responses are elicited in cytotoxic T lymphocytes by different levels of T cell receptor occupancy. J. Exp. Med. 183, 1917–1921 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Dolfi, D. V. et al. Dendritic cells and CD28 costimulation are required to sustain virus-specific CD8+ T cell responses during the effector phase in vivo. J. Immunol. 186, 4599–4608 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Humphreys, I. R. et al. A critical role for ICOS co-stimulation in immune containment of pulmonary influenza virus infection. Eur. J. Immunol. 36, 2928–2938 (2006).

    Article  CAS  PubMed  Google Scholar 

  71. Humphreys, I. R. et al. A critical role for OX40 in T cell-mediated immunopathology during lung viral infection. J. Exp. Med. 198, 1237–1242 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, G. H. et al. Endogenous 4–1BB ligand plays a critical role in protection from influenza-induced disease. J. Immunol. 182, 934–947 (2009).

    Article  CAS  PubMed  Google Scholar 

  73. Snell, L. M. et al. CD8 T cell-intrinsic GITR is required for T cell clonal expansion and mouse survival following severe influenza infection. J. Immunol. 185, 7223–7234 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. McGill, J., Van Rooijen, N. & Legge, K. L. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med. 205, 1635–1646 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Snelgrove, R. J., Godlee, A. & Hussell, T. Airway immune homeostasis and implications for influenza-induced inflammation. Trends Immunol. 32, 328–334 (2011).

    Article  CAS  PubMed  Google Scholar 

  76. La Gruta, N. L., Kedzierska, K., Stambas, J. & Doherty, P. C. A question of self-preservation: immunopathology in influenza virus infection. Immunol. Cell Biol. 85, 85–92 (2007).

    Article  PubMed  Google Scholar 

  77. Campbell, D. J. & Koch, M. A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nature Rev. Immunol. 11, 119–130 (2011).

    Article  CAS  Google Scholar 

  78. Ohkura, N. & Sakaguchi, S. Maturation of effector regulatory T cells. Nature Immunol. 12, 283–284 (2011).

    Article  CAS  Google Scholar 

  79. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunol. 10, 595–602 (2009).

    Article  CAS  Google Scholar 

  80. Ruckwardt, T. J., Bonaparte, K. L., Nason, M. C. & Graham, B. S. Regulatory T cells promote early influx of CD8+ T cells in the lungs of respiratory syncytial virus-infected mice and diminish immunodominance disparities. J. Virol. 83, 3019–3028 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fulton, R. B., Meyerholz, D. K. & Varga, S. M. Foxp3+ CD4 regulatory T cells limit pulmonary immunopathology by modulating the CD8 T cell response during respiratory syncytial virus infection. J. Immunol. 185, 2382–2392 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Lee, D. C. et al. CD25+ natural regulatory T cells are critical in limiting innate and adaptive immunity and resolving disease following respiratory syncytial virus infection. J. Virol. 84, 8790–8798 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Antunes, I. & Kassiotis, G. Suppression of innate immune pathology by regulatory T cells during influenza A virus infection of immunodeficient mice. J. Virol. 84, 12564–12575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Palmer, E. M., Holbrook, B. C., Arimilli, S., Parks, G. D. & Alexander-Miller, M. A. IFNγ-producing, virus-specific CD8+ effector cells acquire the ability to produce IL-10 as a result of entry into the infected lung environment. Virology 404, 225–230 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Sun, J. et al. Autocrine regulation of pulmonary inflammation by effector T-cell derived IL-10 during infection with respiratory syncytial virus. PLoS Pathog. 7, e1002173 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Weiss, K. A., Christiaansen, A. F., Fulton, R. B., Meyerholz, D. K. & Varga, S. M. Multiple CD4+ T cell subsets produce immunomodulatory IL-10 during respiratory syncytial virus infection. J. Immunol. 187, 3145–3154 (2011).

    Article  CAS  PubMed  Google Scholar 

  87. Smit, J. J., Rudd, B. D. & Lukacs, N. W. Plasmacytoid dendritic cells inhibit pulmonary immunopathology and promote clearance of respiratory syncytial virus. J. Exp. Med. 203, 1153–1159 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tate, M. D. et al. Neutrophils ameliorate lung injury and the development of severe disease during influenza infection. J. Immunol. 183, 7441–7450 (2009).

    Article  CAS  PubMed  Google Scholar 

  89. Shirey, K. A. et al. Control of RSV-induced lung injury by alternatively activated macrophages is IL-4Rα-, TLR4-, and IFN-β-dependent. Mucosal Immunol. 3, 291–300 (2010). This study demonstrates that alternatively activated macrophages may mediate the resolution of RSV-induced lung injury.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Odegaard, J. I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Williams, A. E. et al. TGF-β prevents eosinophilic lung disease but impairs pathogen clearance. Microbes Infect. 7, 365–374 (2005).

    Article  CAS  PubMed  Google Scholar 

  92. Carlson, C. M. et al. Transforming growth factor-β: activation by neuraminidase and role in highly pathogenic H5N1 influenza pathogenesis. PLoS Pathog. 6, e1001136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. McCullers, J. A., Speck, K. M., Williams, B. F., Liang, H. & Mirro, J. Jr. Increased influenza vaccination of healthcare workers at a pediatric cancer hospital: results of a comprehensive influenza vaccination campaign. Infect. Control Hosp. Epidemiol. 27, 77–79 (2006).

    Article  PubMed  Google Scholar 

  94. Morens, D. M., Taubenberger, J. K. & Fauci, A. S. Predominant role of bacterial pneumonia as a cause of death in pandemic influenza: implications for pandemic influenza preparedness. J. Infect. Dis. 198, 962–970 (2008).

    Article  PubMed  Google Scholar 

  95. Bautista, E. et al. Clinical aspects of pandemic 2009 influenza A (H1N1) virus infection. N. Engl. J. Med. 362, 1708–1719 (2010).

    Article  PubMed  Google Scholar 

  96. Ballinger, M. N. & Standiford, T. J. Postinfluenza bacterial pneumonia: host defenses gone awry. J. Interferon Cytokine Res. 30, 643–652 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jamieson, A. M., Yu, S., Annicelli, C. H. & Medzhitov, R. Influenza virus-induced glucocorticoids compromise innate host defense against a secondary bacterial infection. Cell Host Microbe 7, 103–114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Didierlaurent, A. et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J. Exp. Med. 205, 323–329 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sun, K. & Metzger, D. W. Inhibition of pulmonary antibacterial defense by interferon-γ during recovery from influenza infection. Nature Med. 14, 558–564 (2008). This study demonstrates that IFNγ can promote secondary bacterial infection following influenza virus infection by downregulating the expression of the class A scavenger receptor MARCO on alveolar macrophages.

    Article  CAS  PubMed  Google Scholar 

  100. Goulding, J. et al. Lowering the threshold of lung innate immune cell activation alters susceptibility to secondary bacterial superinfection. J. Infect. Dis. 204, 1086–1094 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Nakamura, R. et al. Interleukin-15 is critical in the pathogenesis of influenza A virus-induced acute lung injury. J. Virol. 84, 5574–5582 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McNamee, L. A. & Harmsen, A. G. Both influenza-induced neutrophil dysfunction and neutrophil-independent mechanisms contribute to increased susceptibility to a secondary Streptococcus pneumoniae infection. Infect. Immun. 74, 6707–6721 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cooper, J. A. Jr, Carcelen, R. & Culbreth, R. Effects of influenza A nucleoprotein on polymorphonuclear neutrophil function. J. Infect. Dis. 173, 279–284 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Manicassamy, B. et al. Analysis of in vivo dynamics of influenza virus infection in mice using a GFP reporter virus. Proc. Natl Acad. Sci. USA 107, 11531–11536 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shahangian, A. et al. Type I IFNs mediate development of postinfluenza bacterial pneumonia in mice. J. Clin. Invest. 119, 1910–1920 (2009). This study demonstrates that type I IFNs can promote secondary bacterial infection following influenza virus infection by inhibiting the production of the chemokines that recruit neutrophils to the lung.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Small, C. L. et al. Influenza infection leads to increased susceptibility to subsequent bacterial superinfection by impairing NK cell responses in the lung. J. Immunol. 184, 2048–2056 (2010).

    Article  CAS  PubMed  Google Scholar 

  107. Guo, H. et al. The functional impairment of natural killer cells during influenza virus infection. Immunol. Cell Biol. 87, 579–589 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. McKinstry, K. K. et al. IL-10 deficiency unleashes an influenza-specific Th17 response and enhances survival against high-dose challenge. J. Immunol. 182, 7353–7363 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. van der Sluijs, K. F. et al. IL-10 is an important mediator of the enhanced susceptibility to pneumococcal pneumonia after influenza infection. J. Immunol. 172, 7603–7609 (2004).

    Article  CAS  PubMed  Google Scholar 

  110. Kudva, A. et al. Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J. Immunol. 186, 1666–1674 (2011). This study demonstrates that influenza virus infection inhibits the development of antibacterial T H 17 cell responses through the induction of type I IFNs.

    Article  CAS  PubMed  Google Scholar 

  111. Zheng, T. et al. Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J. Clin. Invest. 106, 1081–1093 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Barnes, P. J. The cytokine network in asthma and chronic obstructive pulmonary disease. J. Clin. Invest. 118, 3546–3556 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lukacs, N. W. et al. Differential immune responses and pulmonary pathophysiology are induced by two different strains of respiratory syncytial virus. Am. J. Pathol. 169, 977–986 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Grayson, M. H. et al. Induction of high-affinity IgE receptor on lung dendritic cells during viral infection leads to mucous cell metaplasia. J. Exp. Med. 204, 2759–2769 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Kim, E. Y. et al. Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nature Med. 14, 633–640 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Wills-Karp, M. & Finkelman, F. D. Innate lymphoid cells wield a double-edged sword. Nature Immunol. 12, 1025–1027 (2011).

    Article  CAS  Google Scholar 

  117. Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nature Immunol. 12, 631–638 (2011).

    Article  CAS  Google Scholar 

  118. Saenz, S. A., Noti, M. & Artis, D. Innate immune cell populations function as initiators and effectors in Th2 cytokine responses. Trends Immunol. 31, 407–413 (2010).

    Article  CAS  PubMed  Google Scholar 

  119. Monticelli, L. A. et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nature Immunol. 12, 1045–1054 (2011).

    Article  CAS  Google Scholar 

  120. GeurtsvanKessel, C. H. et al. Dendritic cells are crucial for maintenance of tertiary lymphoid structures in the lung of influenza virus-infected mice. J. Exp. Med. 206, 2339–2349 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Halle, S. et al. Induced bronchus-associated lymphoid tissue serves as a general priming site for T cells and is maintained by dendritic cells. J. Exp. Med. 206, 2593–2601 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Gereke, M., Jung, S., Buer, J. & Bruder, D. Alveolar type II epithelial cells present antigen to CD4+ T cells and induce Foxp3+ regulatory T cells. Am. J. Respir. Crit. Care Med. 179, 344–355 (2009).

    Article  PubMed  Google Scholar 

  123. Strickland, D. H., Kees, U. R. & Holt, P. G. Suppression of T-cell activation by pulmonary alveolar macrophages: dissociation of effects on TcR, IL-2R expression, and proliferation. Eur. Respir. J. 7, 2124–2130 (1994).

    Article  CAS  PubMed  Google Scholar 

  124. Daughety, T. W., Marrack, P., Kappler, J. W. & Chiller, J. M. The capacity of murine alveolar macrophages to stimulate antigen-dependent T-lymphocyte activation and proliferation. Cell. Immunol. 79, 374–382 (1983).

    Article  CAS  PubMed  Google Scholar 

  125. GeurtsvanKessel, C. H. et al. Both conventional and interferon killer dendritic cells have antigen-presenting capacity during influenza virus infection. PLoS ONE 4, e7187 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yoo, J. K., Galligan, C. L., Virtanen, C. & Fish, E. N. Identification of a novel antigen-presenting cell population modulating antiinfluenza type 2 immunity. J. Exp. Med. 207, 1435–1451 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Braciale laboratory for their editorial assistance and insightful discussions, and colleagues in the field who provided recent publications and personal communications. As a result of space limitations we apologize for being unable to cite many primary references relevant to the topic of this Review. This study was supported by grants to T.J.B. from the US National Institutes of Health (RO1 AI-15608, RO1 AI-37293, RO1 HL-33391 and U-19 AI-83024). T.S.K. and J.S. are recipients of Senior Research Training Fellowships from the American Lung Association.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thomas J. Braciale, Jie Sun or Taeg S. Kim.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Viruses that induce infections in humans that are primarily localized to the respiratory tract (PDF 82 kb)

Supplementary information S2 (box)

Non-immune barriers and innate immune defence to virus infection in the lung (PDF 105 kb)

Related links

Related links

FURTHER INFORMATION

Jie Sun's homepage

Thomas J. Braciale's homepage

Glossary

Type I and type II alveolar epithelial cells

Type I alveolar epithelial cells (also known as squamous alveolar cells and type I pneumocytes) form the structure of the alveolar wall and are responsible for gas exchange in the alveoli. Type II alveolar epithelial cells (also known as great alveolar cells) continually secrete pulmonary surfactant to lower the surface tension of pulmonary fluids, thereby increasing gas exchange.

Acute respiratory distress syndrome

(ARDS). A severe inflammatory disease of the lung that is usually triggered by another pulmonary pathology. The uncontrolled inflammation leads to impaired gas exchange, alveolar flooding and/or collapse, and systemic inflammatory response syndrome.

Plasmacytoid DCs

(pDCs). A dendritic cell (DC) subtype defined by the expression of CD11c and B220 and the lack of CD8 and CD11b. pDCs are specialized to produce large amounts of type I interferons in response to viral infection, and they therefore have an important role in the immune response to viruses.

Integrin

A member of a group of proteins that regulate the attachment of cells to one another (cell–cell adhesion) and to the surrounding network of proteins and other molecules (cell–matrix adhesion). Integrins also transmit chemical signals that regulate cell growth and the activity of certain genes.

Sphingosine-1-phosphate

(S1P). A sphingolipid that is involved in signalling. In the immune system, S1P induces the egress of lymphocytes from lymphoid organs by binding to S1P receptors on the cells.

Cross-presentation

A mechanism that can initiate a CD8+ T cell response to an antigen that is not present within antigen-presenting cells (APCs). This exogenous antigen must be taken up by APCs and then re-routed to the MHC class I pathway of antigen presentation.

Efferocytosis

The phagocytic clearance of apoptotic cells before they undergo secondary necrosis. The process usually triggers an anti-inflammatory response.

Inflammatory DCs

Dendritic cells (DCs) that are not normally present in the steady state but develop as a result of inflammation or microbial stimuli. For example, one such subset is tumour necrosis factor- and inducible nitric oxide synthase-producing DCs (TIP DCs). Inflammatory monocytes can also give rise to inflammatory DCs.

Effector TReg cell

A regulatory T (TReg) cell that expresses particular transcription factors, such as T-bet, and follows a differentiation pathway to acquire a phenotype or function for efficiently controlling a specific subset of effector T cells, such as TH1 cells.

Alternatively activated macrophages

(Also known as M2 macrophages). Macrophages that are stimulated by IL-4 or IL-13 and that express arginase 1, the mannose receptor CD206 and IL-4 receptor. There may be pathogen-associated molecular patterns expressed by helminths that can also drive the alternative activation of macrophages.

Innate lymphoid cells

(ILCs; also known as natural helper cells and nuocytes). Cells that combine innate and adaptive immune functions and are part of the first line of defence against mucosal infections. ILCs are distinguished from adaptive lymphocytes by their independence from recombination-activating genes and the resulting absence of specific antigen receptors. They produce large quantities of type 2 cytokines such as IL-5 and IL-13.

Fibrocytes

Mature fibroblasts that no longer produce fibres or intercellular substance in connective tissue. Fibroblasts are large, flat cells that form the collagenous and elastic fibres and intercellular substance of loose connective tissue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braciale, T., Sun, J. & Kim, T. Regulating the adaptive immune response to respiratory virus infection. Nat Rev Immunol 12, 295–305 (2012). https://doi.org/10.1038/nri3166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3166

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing