Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulation and function of mTOR signalling in T cell fate decisions

Key Points

  • The kinase mTOR (mammalian target of rapamycin) is part of an evolutionarily conserved pathway that couples cell growth and metabolism to inputs from the environment in all eukaryotes. mTOR exists in two multiprotein complexes in metazoans, mTOR complex 1 (mTORC1) and mTORC2, which have distinct molecular compositions, cellular actions and physiological functions.

  • T cells depend on mTOR signalling to sense and integrate immune signals from dendritic cells (including antigenic signals, co-stimulatory molecules and cytokines), environmental cues derived from growth factors and immunoregulatory factors, and nutrients.

  • Under steady-state conditions, mTOR activity is tightly controlled by multiple inhibitory molecules — in particular the tumour suppressors PTEN (phosphatase and tensin homologue), TSC1 (tuberous sclerosis 1) and LKB1 (liver kinase B1) — to enforce the normal homeostasis of T cells. Loss of these control mechanisms disrupts the development and maintenance of T cells.

  • Antigen recognition triggers robust mTOR activation, which drives the differentiation of naive CD4+ T cells into the T helper 1 (TH1), TH2 and TH17 cell effector lineages, while inhibiting the induction of regulatory T cells and T cell anergy. mTOR also promotes an effector fate over a memory fate for CD8+ T cells in infection and tumour immunity.

  • mTOR serves as a signalling node to activate several downstream effector pathways, including immune receptor signalling, metabolic programmes and migratory activity. The coordination of these pathways by mTOR is important to achieve a productive immune response.

  • Inhibition of mTOR induces immunosuppression in transplant rejections and autoimmune disorders, but also represents a promising strategy for vaccine development to boost immunity against pathogens and tumours. More potent and selective inhibitors of mTOR and mTOR-associated pathways are being developed for clinical and research purposes.

Abstract

The evolutionarily conserved kinase mTOR (mammalian target of rapamycin) couples cell growth and metabolism to environmental inputs in eukaryotes. T cells depend on mTOR signalling to integrate immune signals and metabolic cues for their proper maintenance and activation. Under steady-state conditions, mTOR is actively controlled by multiple inhibitory mechanisms, and this enforces normal T cell homeostasis. Antigen recognition by naive CD4+ and CD8+ T cells triggers mTOR activation, which in turn programmes the differentiation of these cells into functionally distinct lineages. This Review focuses on the signalling mechanisms of mTOR in T cell homeostatic and functional fates, and discusses the therapeutic implications of targeting mTOR in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Regulation and function of mTOR signalling pathways in T cells.
Figure 2: mTOR-dependent signalling in CD4+ T cell differentiation.
Figure 3: mTOR in T cell metabolism.

Similar content being viewed by others

References

  1. Zoncu, R., Efeyan, A. & Sabatini, D. M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nature Rev. Mol. Cell Biol. 12, 21–35 (2011).

    CAS  Google Scholar 

  2. Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nature Rev. Immunol. 9, 324–337 (2009).

    CAS  Google Scholar 

  3. Araki, K., Ellebedy, A. H. & Ahmed, R. TOR in the immune system. Curr. Opin. Cell Biol. 23, 707–715 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Powell, J. D. & Delgoffe, G. M. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 33, 301–311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Delgoffe, G. M. et al. The mTOR kinase differentially regulates effector and regulatory T cell lineage commitment. Immunity 30, 832–844 (2009). This paper provides the first genetic evidence that mTOR promotes CD4+ effector T cell differentiation while inhibiting the induction of T Reg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang, K., Neale, G., Green, D. R., He, W. & Chi, H. The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nature Immunol. 12, 888–897 (2011).

    CAS  Google Scholar 

  8. Wu, Q. et al. The tuberous sclerosis complex–mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J. Immunol. 187, 1106–1112 (2011). References 7 and 8 show that the maintenance of T cell quiescence requires TSC1.

    CAS  PubMed  Google Scholar 

  9. O'Brien, T. F. et al. Regulation of T-cell survival and mitochondrial homeostasis by TSC1. Eur. J. Immunol. 41, 3361–3370 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320, 1496–1501 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sancak, Y. et al. Ragulator–Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gwinn, D. M. et al. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol. Cell 30, 214–226 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zheng, M. et al. Inactivation of Rheb by PRAK-mediated phosphorylation is essential for energy-depletion-induced suppression of mTORC1. Nature Cell Biol. 13, 263–272 (2011).

    CAS  PubMed  Google Scholar 

  14. Wu, X. N. et al. Phosphorylation of Raptor by p38β participates in arsenite-induced mammalian target of rapamycin complex 1 (mTORC1) activation. J. Biol. Chem. 286, 31501–31511 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zinzalla, V., Stracka, D., Oppliger, W. & Hall, M. N. Activation of mTORC2 by association with the ribosome. Cell 144, 757–768 (2011).

    CAS  PubMed  Google Scholar 

  16. Oh, W. J. et al. mTORC2 can associate with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 29, 3939–3951 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Saci, A., Cantley, L. C. & Carpenter, C. L. Rac1 regulates the activity of mTORC1 and mTORC2 and controls cellular size. Mol. Cell 42, 50–61 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Turner, M. S., Kane, L. P. & Morel, P. A. Dominant role of antigen dose in CD4+Foxp3+ regulatory T cell induction and expansion. J. Immunol. 183, 4895–4903 (2009).

    CAS  PubMed  Google Scholar 

  19. Katzman, S. D. et al. Duration of antigen receptor signaling determines T-cell tolerance or activation. Proc. Natl Acad. Sci. USA 107, 18085–18090 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Colombetti, S., Basso, V., Mueller, D. L. & Mondino, A. Prolonged TCR/CD28 engagement drives IL-2-independent T cell clonal expansion through signaling mediated by the mammalian target of rapamycin. J. Immunol. 176, 2730–2738 (2006).

    CAS  PubMed  Google Scholar 

  21. Zheng, Y. et al. A role for mammalian target of rapamycin in regulating T cell activation versus anergy. J. Immunol. 178, 2163–2170 (2007).

    CAS  PubMed  Google Scholar 

  22. Zheng, Y., Delgoffe, G. M., Meyer, C. F., Chan, W. & Powell, J. D. Anergic T cells are metabolically anergic. J. Immunol. 183, 6095–6101 (2009).

    CAS  PubMed  Google Scholar 

  23. So, T., Choi, H. & Croft, M. OX40 complexes with phosphoinositide 3-kinase and protein kinase B (PKB) to augment TCR-dependent PKB signaling. J. Immunol. 186, 3547–3555 (2011).

    CAS  PubMed  Google Scholar 

  24. Francisco, L. M. et al. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J. Exp. Med. 206, 3015–3029 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wofford, J. A., Wieman, H. L., Jacobs, S. R., Zhao, Y. & Rathmell, J. C. IL-7 promotes Glut1 trafficking and glucose uptake via STAT5-mediated activation of Akt to support T-cell survival. Blood 111, 2101–2111 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rathmell, J. C., Farkash, E. A., Gao, W. & Thompson, C. B. IL-7 enhances the survival and maintains the size of naive T cells. J. Immunol. 167, 6869–6876 (2001).

    CAS  PubMed  Google Scholar 

  27. Rao, R. R., Li, Q., Odunsi, K. & Shrikant, P. A. The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32, 67–78 (2010). This study describes mTOR-dependent regulation of T-bet and EOMES as important mechanisms for CD8+ effector and memory T cell differentiation.

    PubMed  PubMed Central  Google Scholar 

  28. Stephenson, L. M., Park, D. S., Mora, A. L., Goenka, S. & Boothby, M. Sequence motifs in IL-4Rα mediating cell-cycle progression of primary lymphocytes. J. Immunol. 175, 5178–5185 (2005).

    CAS  PubMed  Google Scholar 

  29. Gulen, M. F. et al. The receptor SIGIRR suppresses Th17 cell proliferation via inhibition of the interleukin-1 receptor pathway and mTOR kinase activation. Immunity 32, 54–66 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Delgoffe, G. M. et al. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunol. 12, 295–303 (2011). This paper describes the differential requirements for mTORC1 and mTORC2 in T H 1, T H 2 and T H 17 cell differentiation.

    CAS  Google Scholar 

  31. Zhou, J. et al. Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc. Natl Acad. Sci. USA 104, 16158–16163 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    CAS  PubMed  Google Scholar 

  33. Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010). Here, the authors describe a leptin–mTOR axis that modulates the responsiveness of T Reg cells to TCR signals.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241–255 (2007).

    CAS  PubMed  Google Scholar 

  35. Galgani, M. et al. Leptin modulates the survival of autoreactive CD4+ T cells through the nutrient/energy-sensing mammalian target of rapamycin signaling pathway. J. Immunol. 185, 7474–7479 (2010).

    CAS  PubMed  Google Scholar 

  36. Liu, G. et al. The receptor S1P1 overrides regulatory T cell-mediated immune suppression through Akt–mTOR. Nature Immunol. 10, 769–777 (2009).

    CAS  Google Scholar 

  37. Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1–mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nature Immunol. 11, 1047–1056 (2010). This study identifies an important role for S1PR1 in the activation of mTOR and the modulation of T H 1 and T Reg cell differentiation.

    CAS  Google Scholar 

  38. Geng, D. et al. When Toll-like receptor and T-cell receptor signals collide: a mechanism for enhanced CD8 T-cell effector function. Blood 116, 3494–3504 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Quigley, M., Martinez, J., Huang, X. & Yang, Y. A critical role for direct TLR2-MyD88 signaling in CD8 T-cell clonal expansion and memory formation following vaccinia viral infection. Blood 113, 2256–2264 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rahman, A. H. et al. Antiviral memory CD8 T-cell differentiation, maintenance, and secondary expansion occur independently of MyD88. Blood 117, 3123–3130 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ciofani, M. & Zuniga-Pflucker, J. C. Notch promotes survival of pre-T cells at the β-selection checkpoint by regulating cellular metabolism. Nature Immunol. 6, 881–888 (2005).

    CAS  Google Scholar 

  42. Sprent, J. & Surh, C. D. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nature Immunol. 12, 478–484 (2011).

    CAS  Google Scholar 

  43. Michalek, R. D. & Rathmell, J. C. The metabolic life and times of a T-cell. Immunol. Rev. 236, 190–202 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Suzuki, A. et al. T cell-specific loss of Pten leads to defects in central and peripheral tolerance. Immunity 14, 523–534 (2001).

    CAS  PubMed  Google Scholar 

  45. Xue, L., Nolla, H., Suzuki, A., Mak, T. W. & Winoto, A. Normal development is an integral part of tumorigenesis in T cell-specific PTEN-deficient mice. Proc. Natl Acad. Sci. USA 105, 2022–2027 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hagenbeek, T. J. & Spits, H. T-cell lymphomas in T-cell-specific Pten-deficient mice originate in the thymus. Leukemia 22, 608–619 (2008).

    CAS  PubMed  Google Scholar 

  47. Finlay, D. K. et al. Phosphoinositide-dependent kinase 1 controls migration and malignant transformation but not cell growth and proliferation in PTEN-null lymphocytes. J. Exp. Med. 206, 2441–2454 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Guo, W. et al. Suppression of leukemia development caused by PTEN loss. Proc. Natl Acad. Sci. USA 108, 1409–1414 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu, X. et al. Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice. J. Clin. Invest. 120, 2497–2507 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Hagenbeek, T. J. et al. The loss of PTEN allows TCRαβ lineage thymocytes to bypass IL-7 and pre-TCR-mediated signaling. J. Exp. Med. 200, 883–894 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Kishimoto, H. et al. The Pten/PI3K pathway governs the homeostasis of Vα14 iNKT cells. Blood 109, 3316–3324 (2007).

    CAS  PubMed  Google Scholar 

  52. Di Cristofano, A. et al. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285, 2122–2125 (1999).

    CAS  PubMed  Google Scholar 

  53. Sauer, S. et al. T cell receptor signaling controls Foxp3 expression via PI3K, Akt, and mTOR. Proc. Natl Acad. Sci. USA 105, 7797–7802 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunol. 9, 405–414 (2008).

    CAS  Google Scholar 

  55. Olive, V. et al. miR-19 is a key oncogenic component of mir-17-92. Genes Dev. 23, 2839–2849 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Jiang, S. et al. Molecular dissection of the miR-17-92 cluster's critical dual roles in promoting Th1 responses and preventing inducible TReg differentiation. Blood 118, 5487–5497 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Tamas, P. et al. LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells. Eur. J. Immunol. 40, 242–253 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Cao, Y. et al. The serine/threonine kinase LKB1 controls thymocyte survival through regulation of AMPK activation and Bcl-XL expression. Cell Res. 20, 99–108 (2010).

    CAS  PubMed  Google Scholar 

  59. Cao, Y. et al. LKB1 regulates TCR-mediated PLCγ1 activation and thymocyte positive selection. EMBO J. 30, 2083–2093 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Maciver, N. J. et al. The liver kinase B1 is a central regulator of T cell development, activation, and metabolism. J. Immunol. 187, 4187–4198 (2011).

    CAS  PubMed  Google Scholar 

  61. Mihaylova, M. M. & Shaw, R. J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nature Cell Biol. 13, 1016–1023 (2011).

    CAS  PubMed  Google Scholar 

  62. Tamas, P. et al. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203, 1665–1670 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Mayer, A., Denanglaire, S., Viollet, B., Leo, O. & Andris, F. AMP-activated protein kinase regulates lymphocyte responses to metabolic stress but is largely dispensable for immune cell development and function. Eur. J. Immunol. 38, 948–956 (2008).

    CAS  PubMed  Google Scholar 

  64. Yilmaz, O. H. et al. Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441, 475–482 (2006).

    CAS  PubMed  Google Scholar 

  65. Zhang, J. et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention. Nature 441, 518–522 (2006).

    CAS  PubMed  Google Scholar 

  66. Chen, C. et al. TSC–mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J. Exp. Med. 205, 2397–2408 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gan, B. et al. mTORC1-dependent and -independent regulation of stem cell renewal, differentiation, and mobilization. Proc. Natl Acad. Sci. USA 105, 19384–19389 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gan, B. et al. Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature 468, 701–704 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Gurumurthy, S. et al. The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature 468, 659–663 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Nakada, D., Saunders, T. L. & Morrison, S. J. Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature 468, 653–658 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Peterson, T. R. et al. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 137, 873–886 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Budanov, A. V. & Karin, M. p53 target genes Sestrin1 and Sestrin2 connect genotoxic stress and mTOR signaling. Cell 134, 451–460 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sancak, Y. et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol. Cell 25, 903–915 (2007).

    CAS  PubMed  Google Scholar 

  74. Vander Haar, E., Lee, S. I., Bandhakavi, S., Griffin, T. J. & Kim, D. H. Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nature Cell Biol. 9, 316–323 (2007).

    CAS  PubMed  Google Scholar 

  75. Kerdiles, Y. M. et al. Foxo1 links homing and survival of naive T cells by regulating L-selectin, CCR7 and interleukin 7 receptor. Nature Immunol. 10, 176–184 (2009).

    CAS  Google Scholar 

  76. Ouyang, W., Beckett, O., Flavell, R. A. & Li, M. O. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30, 358–371 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lee, K. et al. Mammalian target of rapamycin protein complex 2 regulates differentiation of Th1 and Th2 cell subsets via distinct signaling pathways. Immunity 32, 743–753 (2010). This paper describes the roles of mTORC2 in T H 1 and T H 2 cell differentiation through its effects on AKT and PKCθ signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Sinclair, L. V. et al. Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature Immunol. 9, 513–521 (2008). This study provided the first evidence for the regulatory role of mTOR in T cell trafficking.

    CAS  Google Scholar 

  79. Macintyre, A. N. et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity 34, 224–236 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gorentla, B. K., Wan, C. K. & Zhong, X. P. Negative regulation of mTOR activation by diacylglycerol kinases. Blood 117, 4022–4031 (2010).

    Google Scholar 

  81. Peter, C., Waldmann, H. & Cobbold, S. P. mTOR signalling and metabolic regulation of T cell differentiation. Curr. Opin. Immunol. 22, 655–661 (2010).

    CAS  PubMed  Google Scholar 

  82. Araki, K., Youngblood, B. & Ahmed, R. The role of mTOR in memory CD8 T-cell differentiation. Immunol. Rev. 235, 234–243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Finlay, D. & Cantrell, D. A. Metabolism, migration and memory in cytotoxic T cells. Nature Rev. Immunol. 11, 109–117 (2011).

    CAS  Google Scholar 

  84. Zhu, J., Yamane, H. & Paul, W. E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Shi, L. Z. et al. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367–1376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011). References 85 and 86 describe an important role for HIF1α and metabolic pathways in T H 17 and T Reg cell differentiation.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  88. Wang, R. et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871–882 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jones, R. G. & Thompson, C. B. Revving the engine: signal transduction fuels T cell activation. Immunity 27, 173–178 (2007).

    CAS  PubMed  Google Scholar 

  90. Pearce, E. L. Metabolism in T cell activation and differentiation. Curr. Opin. Immunol. 22, 314–320 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Frauwirth, K. A. et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 16, 769–777 (2002).

    CAS  PubMed  Google Scholar 

  92. Rathmell, J. C. T cell Myc-tabolism. Immunity 35, 845–846 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Michalek, R. D. et al. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc. Natl Acad. Sci. USA 108, 18348–18353 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Gordan, J. D., Thompson, C. B. & Simon, M. C. HIF and c-Myc: sibling rivals for control of cancer cell metabolism and proliferation. Cancer Cell 12, 108–113 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. DeBerardinis, R. J., Lum, J. J., Hatzivassiliou, G. & Thompson, C. B. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 7, 11–20 (2008).

    CAS  Google Scholar 

  96. Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Michalek, R. D. et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J. Immunol. 186, 3299–3303 (2011).

    CAS  PubMed  Google Scholar 

  98. Sundrud, M. S. et al. Halofuginone inhibits TH17 cell differentiation by activating the amino acid starvation response. Science 324, 1334–1338 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Cui, G. et al. Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J. Clin. Invest. 121, 658–670 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Duvel, K. et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 39, 171–183 (2010).

    PubMed  PubMed Central  Google Scholar 

  101. Nicklin, P. et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 136, 521–534 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Grohmann, U. & Bronte, V. Control of immune response by amino acid metabolism. Immunol. Rev. 236, 243–264 (2010).

    CAS  PubMed  Google Scholar 

  103. Cobbold, S. P. et al. Infectious tolerance via the consumption of essential amino acids and mTOR signaling. Proc. Natl Acad. Sci. USA 106, 12055–12060 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    CAS  PubMed  Google Scholar 

  105. Cobbold, S. P., Adams, E., Nolan, K. F., Regateiro, F. S. & Waldmann, H. Connecting the mechanisms of T-cell regulation: dendritic cells as the missing link. Immunol. Rev. 236, 203–218 (2010).

    CAS  PubMed  Google Scholar 

  106. Locasale, J. W. & Cantley, L. C. Metabolic flux and the regulation of mammalian cell growth. Cell Metab. 14, 443–451 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Lee, K., Won, H. Y., Bae, M. A., Hong, J. H. & Hwang, E. S. Spontaneous and aging-dependent development of arthritis in NADPH oxidase 2 deficiency through altered differentiation of CD11b+ and Th/TReg cells. Proc. Natl Acad. Sci. USA 108, 9548–9553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhang, J. et al. The type III histone deacetylase Sirt1 is essential for maintenance of T cell tolerance in mice. J. Clin. Invest. 119, 3048–3058 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Beugnet, A., Tee, A. R., Taylor, P. M. & Proud, C. G. Regulation of targets of mTOR (mammalian target of rapamycin) signalling by intracellular amino acid availability. Biochem. J. 372, 555–566 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Choo, A. Y. et al. Glucose addiction of TSC null cells is caused by failed mTORC1-dependent balancing of metabolic demand with supply. Mol. Cell 38, 487–499 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Buchakjian, M. R. & Kornbluth, S. The engine driving the ship: metabolic steering of cell proliferation and death. Nature Rev. Mol. Cell Biol. 11, 715–727 (2010).

    CAS  Google Scholar 

  112. Mason, E. F. & Rathmell, J. C. Cell metabolism: An essential link between cell growth and apoptosis. Biochim. Biophys. Acta 1813, 645–654 (2011).

    CAS  PubMed  Google Scholar 

  113. Battaglia, M., Stabilini, A. & Roncarolo, M. G. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748 (2005).

    CAS  PubMed  Google Scholar 

  114. Strauss, L. et al. Selective survival of naturally occurring human CD4+CD25+Foxp3+ regulatory T cells cultured with rapamycin. J. Immunol. 178, 320–329 (2007).

    CAS  PubMed  Google Scholar 

  115. Zeiser, R. et al. Differential impact of mammalian target of rapamycin inhibition on CD4+CD25+Foxp3+ regulatory T cells compared with conventional CD4+ T cells. Blood 111, 453–462 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Strauss, L., Czystowska, M., Szajnik, M., Mandapathil, M. & Whiteside, T. L. Differential responses of human regulatory T cells (TReg) and effector T cells to rapamycin. PLoS ONE 4, e5994 (2009).

    PubMed  PubMed Central  Google Scholar 

  117. Young, D. A. & Nickerson-Nutter, C. L. mTOR — beyond transplantation. Curr. Opin. Pharmacol. 5, 418–423 (2005).

    CAS  PubMed  Google Scholar 

  118. Fernandez, D., Bonilla, E., Mirza, N., Niland, B. & Perl, A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 54, 2983–2988 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Araki, K. et al. mTOR regulates memory CD8 T-cell differentiation. Nature 460, 108–112 (2009). References 96 and 119 are the first reports to implicate mTOR and metabolic pathways in CD8+ memory T cell formation.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Ferrer, I. R. et al. Cutting edge: rapamycin augments pathogen-specific but not graft-reactive CD8+ T cell responses. J. Immunol. 185, 2004–2008 (2010).

    CAS  PubMed  Google Scholar 

  121. Turner, A. P. et al. Sirolimus enhances the magnitude and quality of viral-specific CD8+ T-cell responses to vaccinia virus vaccination in rhesus macaques. Am. J. Transplant. 11, 613–618 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Li, Q. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34, 541–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang, Y., Wang, X. Y., Subjeck, J. R., Shrikant, P. A. & Kim, H. L. Temsirolimus, an mTOR inhibitor, enhances anti-tumour effects of heat shock protein cancer vaccines. Br. J. Cancer. 104, 643–652 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Chawla, A., Nguyen, K. D. & Goh, Y. P. Macrophage-mediated inflammation in metabolic disease. Nature Rev. Immunol. 11, 738–749 (2011).

    CAS  Google Scholar 

  125. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009).

    CAS  PubMed  Google Scholar 

  126. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nature Med. 15, 914–920 (2009).

    CAS  PubMed  Google Scholar 

  127. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).

    CAS  PubMed  Google Scholar 

  128. Choo, A. Y., Yoon, S. O., Kim, S. G., Roux, P. P. & Blenis, J. Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc. Natl Acad. Sci. USA 105, 17414–17419 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. O'Reilly, K. E. et al. mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res. 66, 1500–1508 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Benjamin, D., Colombi, M., Moroni, C. & Hall, M. N. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nature Rev. Drug Discov. 10, 868–880 (2011).

    CAS  Google Scholar 

  131. Apsel, B. et al. Targeted polypharmacology: discovery of dual inhibitors of tyrosine and phosphoinositide kinases. Nature Chem. Biol. 4, 691–699 (2008).

    CAS  Google Scholar 

  132. Feldman, M. E. et al. Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2. PLoS Biol. 7, e38 (2009).

    PubMed  Google Scholar 

  133. Thoreen, C. C. et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J. Biol. Chem. 284, 8023–8032 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hsieh, A. C. et al. Genetic dissection of the oncogenic mTOR pathway reveals druggable addiction to translational control via 4EBP–eIF4E. Cancer Cell 17, 249–261 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Janes, M. R. et al. Effective and selective targeting of leukemia cells using a TORC1/2 kinase inhibitor. Nature Med. 16, 205–213 (2010).

    CAS  PubMed  Google Scholar 

  136. Nath, N. et al. 5-aminoimidazole-4-carboxamide ribonucleoside: a novel immunomodulator with therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Immunol. 175, 566–574 (2005).

    CAS  PubMed  Google Scholar 

  137. Nath, N. et al. Metformin attenuated the autoimmune disease of the central nervous system in animal models of multiple sclerosis. J. Immunol. 182, 8005–8014 (2009).

    CAS  PubMed  Google Scholar 

  138. Dunkle, A. & He, Y. W. Apoptosis and autophagy in the regulation of T lymphocyte function. Immunol. Res. 49, 70–86 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Haribhai, D. et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity 35, 109–122 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Kang, J., Huddleston, S. J., Fraser, J. M. & Khoruts, A. De novo induction of antigen-specific CD4+CD25+Foxp3+ regulatory T cells in vivo following systemic antigen administration accompanied by blockade of mTOR. J. Leukoc. Biol. 83, 1230–1239 (2008).

    CAS  PubMed  Google Scholar 

  141. Gao, W. et al. Contrasting effects of cyclosporine and rapamycin in de novo generation of alloantigen-specific regulatory T cells. Am. J. Transplant. 7, 1722–1732 (2007).

    CAS  PubMed  Google Scholar 

  142. Haxhinasto, S., Mathis, D. & Benoist, C. The AKT–mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J. Exp. Med. 205, 565–574 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Song, K., Wang, H., Krebs, T. L. & Danielpour, D. Novel roles of Akt and mTOR in suppressing TGF-β/ALK5-mediated Smad3 activation. EMBO J. 25, 58–69 (2006).

    CAS  PubMed  Google Scholar 

  144. Ouyang, W. et al. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nature Immunol. 11, 618–627 (2010).

    CAS  Google Scholar 

  145. Harada, Y. et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J. Exp. Med. 207, 1381–1391 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Kerdiles, Y. M. et al. Foxo transcription factors control regulatory T cell development and function. Immunity 33, 890–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Merkenschlager, M. & von Boehmer, H. PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J. Exp. Med. 207, 1347–1350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Seoane, J., Le, H. V., Shen, L., Anderson, S. A. & Massague, J. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 117, 211–223 (2004).

    CAS  PubMed  Google Scholar 

  149. Zhang, N. & Bevan, M. J. CD8+ T cells: foot soldiers of the immune system. Immunity 35, 161–168 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. van der Windt, G. J. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012).

    CAS  PubMed  Google Scholar 

  151. Hand, T. W. et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc. Natl Acad. Sci. USA 107, 16601–16606 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Finlay, D. & Cantrell, D. Phosphoinositide 3-kinase and the mammalian target of rapamycin pathways control T cell migration. Ann. NY Acad. Sci. 1183, 149–157 (2010).

    CAS  PubMed  Google Scholar 

  153. Koch, M. A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nature Immunol. 10, 595–602 (2009).

    CAS  Google Scholar 

  154. Taqueti, V. R. et al. T-bet controls pathogenicity of CTLs in the heart by separable effects on migration and effector activity. J. Immunol. 177, 5890–5901 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I acknowledge the large number of researchers who have contributed to this field whose work was not cited owing to space limitations. I thank R. Wang and Y. Wang for critical comments on the manuscript, and members of my laboratory for helpful discussions. The author's research is supported by the US National Institutes of Health (K01 AR053573 and R01 NS064599), the National Multiple Sclerosis Society (RG4180-A-1), the Lupus Research Institute, the Cancer Research Institute and the American Lebanese Syrian Associated Charities.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Related links

Related links

FURTHER INFORMATION

Hongbo Chi's homepage

Glossary

Metabolism

Intracellular chemical reactions that convert nutrients and endogenous molecules into energy and biomass (proteins, nucleic acids and lipids). Naive T cells have a catabolic metabolism through which they use glucose, fatty acids and amino acids for ATP generation via the tricarboxylic acid cycle and oxidative phosphorylation. On antigen stimulation, the bioenergetic demands of a T cell increase dramatically and the cells transition into anabolic metabolism mediated by glycolysis and glutaminolysis.

AMP-activated protein kinase

(AMPK). A group of serine/threonine kinases that are activated in response to energy depletion. AMPK is an important activator of fatty acid oxidation and a potent inhibitor of mTORC1.

Regulatory T cells

(TReg cells). A subset of CD4+ T cells that expresses FOXP3 and is crucial for the maintenance of immune tolerance. Although TReg cells mainly develop in the thymus as a separate lineage of CD4+ T cells, known as naturally occurring TReg cells, a second subset of TReg cells (known as induced TReg cells) arises de novo from conventional T cells in the periphery following antigen stimulation in the presence of TGFβ.

Invariant natural killer T cells

(iNKT cells). A subset of immune cells that shares properties with both T cells and natural killer cells.

Central tolerance

A process that eliminates self-reactive lymphocytes during their development. For T cells, this occurs mainly through clonal deletion in the thymus.

Peripheral tolerance

A process that downregulates the activation of self-reactive T cells in secondary lymphoid organs. Two of the most important mechanisms are suppression by regulatory T cells and the induction of T cell anergy.

Catabolic metabolism

The breakdown of complex substances into simpler ones, which is often accompanied by ATP production. Examples include the oxidation of fatty acids and amino acids.

Oxidative phosphorylation

A metabolic pathway that produces ATP from the oxidation of nutrients and the transfer of electrons in a two-step process in mitochondria. The first reaction involves the conversion of intermediate molecules (pyruvate and fatty acids) into acetyl-CoA, which enters the tricarboxylic acid cycle, yielding free electrons that are carried by NADH and FADH2. In the second reaction, electrons from NADH and FADH2 are transferred to the electron-transport chain, resulting in the movement of protons out of the mitochondrial matrix and the generation of an electrochemical potential for ATP synthesis.

Fatty acid oxidation

An important metabolic process used to derive energy through the mobilization and oxidation of fatty acids, mainly in the mitochondrial matrix. Fatty acid oxidation is positively and negatively regulated by AMPK and mTOR, respectively.

T cell anergy

A state of T cell unresponsiveness to antigen stimulation in which T cells fail to proliferate and produce interleukin-2.

Autophagy

A recycling process in which the cell degrades cytoplasmic organelles and proteins in lysosomes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, H. Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12, 325–338 (2012). https://doi.org/10.1038/nri3198

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3198

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing