Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Eosinophils: changing perspectives in health and disease

Key Points

  • Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have provided a more sophisticated understanding of eosinophil effector functions and a more nuanced view of their contributions to the pathogenesis of various diseases, including asthma and respiratory allergies, eosinophilic gastrointestinal diseases, hypereosinophilic syndromes and parasitic infection.

  • Eosinophils are granulocytes that develop in the bone marrow from pluripotent progenitors in response to cytokines, such as interleukin-5 (IL-5), IL-3 and granulocyte–macrophage colony-stimulating factor (GM-CSF). Mature eosinophils are released into the peripheral blood and enter tissues in response to cooperative signalling between IL-5 and eotaxin family chemokines.

  • Eosinophils in peripheral blood and tissues are uniquely identified by their bilobed nuclei, their large specific granules that store cytokines, cationic proteins and enzymes, and their expression of the IL-5 receptor and CC-chemokine receptor 3 (CCR3). In addition, the receptors sialic acid-binding immunoglobulin-like lectin 8 (SIGLEC-8) and SIGLEC-F are expressed by human and mouse eosinophils, respectively.

  • IL-5 has a central and profound role in all aspects of eosinophil development, activation and survival. IL-5 is produced by T helper 2 (TH2) cells, and more recently the contributions of the epithelium-derived innate cytokines thymic stromal lymphopoietin (TSLP), IL-25 and IL-33 in promoting eosinophilia via the induction of IL-5 have also been recognized.

  • Although eosinophil responses are influenced by cytokines produced by T cells, eosinophils in turn modulate the functions of B and T cells. Eosinophils also communicate with a range of innate immune cells (such as mast cells, dendritic cells, macrophages and neutrophils). Eosinophils serve to bridge innate and adaptive immunity by regulating the production of chemoattractants and cytokines (including CC-chemokine ligand 17 (CCL17), CCL22, a proliferation-inducing ligand (APRIL) and IL-6) and via antigen presentation.

  • Both successful and unsuccessful attempts to target eosinophils have yielded remarkable insights into their contribution to disease pathogenesis. Many eosinophil-associated inflammatory conditions have been shown to be heterogeneous in nature. As such, successful therapeutic strategies will depend on the correlation of disease activity with dysregulated eosinophil function as well as the identification of the crucial molecules that regulate eosinophil accumulation in the affected tissues.

Abstract

Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have profoundly altered this simplistic view of eosinophils and their function. New insights into the molecular pathways that control the development, trafficking and degranulation of eosinophils have improved our understanding of the immunomodulatory functions of these cells and their roles in promoting homeostasis. Likewise, recent developments have generated a more sophisticated view of how eosinophils contribute to the pathogenesis of different diseases, including asthma and primary hypereosinophilic syndromes, and have also provided us with a more complete appreciation of the activities of these cells during parasitic infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The eosinophil.
Figure 2: Cellular features of eosinophils.
Figure 3: Eosinophils modulate the function of other leukocytes.

Similar content being viewed by others

References

  1. Steinbach, K. H. et al. Estimation of kinetic parameters of neutrophilic, eosinophilic, and basophilic granulocytes in human blood. Blut 39, 27–38 (1979).

    Article  CAS  PubMed  Google Scholar 

  2. Lamousé-Smith, E. S. & Furuta, G. T. Eosinophils in the gastrointestinal tract. Curr. Gastroenterol. Rep. 8, 390–395 (2006).

    Article  PubMed  Google Scholar 

  3. Hogan, S. P. et al. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy 38, 709–750 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Blanchard, C. & Rothenberg, M. E. Biology of the eosinophil. Adv. Immunol. 101, 81–121 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Foster, P. S. et al. Elemental signals regulating eosinophil accumulation in the lung. Immunol. Rev. 179, 173–181 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Fabre, V. et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J. Immunol. 182, 1577–1583 (2009). This study demonstrated that, in the absence of eosinophils, muscle-residentlarvae of the parasite Trichinella spiralis died in large numbers in an infected mouse model. These results suggest that, among other possibilities, eosinophils are recruited to sustain rather than eliminate parasitic infection, a potentially interesting reversal of the traditional view.

    Article  CAS  PubMed  Google Scholar 

  7. Gebreselassie, N. G. et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J. Immunol. 188, 417–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Wegmann, M. Targeting eosinophil biology in asthma therapy. Am. J. Respir. Cell. Mol. Biol. 45, 667–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Jacobsen, E. A., Ochkur, S. I., Lee, N. A. & Lee, J. J. Eosinophils and asthma. Curr. Allergy Asthma Rep. 7, 18–26 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, C. et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 195, 1387–1395 (2002). This paper describes the serendipitous creation of the ΔdblGATA eosinophil-deficient mouse model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee, J. J. et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science 305, 1773–1776 (2004). In this paper, the authors describe the creation of the TgPHIL eosinophil-deficient mouse model using a cytosuicide approach and demonstrate the role of eosinophils in inflammation and tissue remodelling in allergic airway disease.

    Article  CAS  PubMed  Google Scholar 

  12. Lee, J. J. et al. Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J. Allergy Clin. Immunol. 130, 572–584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shamri, R., Xenakis, J. J. & Spencer, L. A. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 343, 57–83 (2011).

    Article  PubMed  Google Scholar 

  14. Mould, A., Matthaei, K., Young, I. & Foster, P. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J. Clin. Invest. 99, 1064–1071 (1997). The findings of this study demonstrate the interactions between IL-5 and CCL11 in promoting eosinophil release from the bone marrow and eosinophil homing to tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Collins, P. D., Marleau, S., Griffiths-Johnson, D. A., Jose, P. J. & Williams, T. J. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 182, 1169–1174 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Wong, C. K., Hu, S., Cheung, P. F. & Lam, C. W. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am. J. Respir. Cell. Mol. Biol. 43, 305–315 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c- Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010).

    CAS  PubMed  Google Scholar 

  18. Neill, D. R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010). As shown in this manuscript, stimulation with IL-25 and IL-33 causes a newly discovered innate effector leukocyte population to expand and to release the eosinophil-activating cytokines IL-5 and IL-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ikutani, M. et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 188, 703–713 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Corrigan, C. J. et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J. Allergy Clin. Immunol. 128, 116–124 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Terrier, B. et al. Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg-Strauss syndrome. Blood 116, 4523–4531 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Mirchandani, A. S., Salmond, R. J. & Liew, F. Y. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol. 33, 389–396 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Cherry, W. B., Yoon, J., Bartemes, K. R., Iijima, K. & Kita, H. A novel IL-4 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 121, 1484–1490 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Matsuba-Kitamura, S. et al. Contribution of IL-33 to induction and augmentation of experimental allergic conjunctivitis. Int. Immunol. 22, 479–489 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. Mjösberg, J. M. et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunol. 12, 1055–1062 (2011).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Silencing IL-23 expression by small hairpin RNA protects against asthma in mice. Exp. Mol. Med. 43, 197–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peng, J., Yang, X. O., Chang, S. H., Yang, J. & Dong, C. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation. Cell Res. 20, 62–71 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Szymczak, W. A., Sellers, R. S. & Pirofski, L. A. IL-23 dampens theallergic response to Cryptococcus neoformans through IL-17-independent and -dependent mechanisms. Am. J. Pathol. 180, 1547–1559 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lotfi, R., Lee, J. J. & Lotze, M. T. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J. Immunother. 30, 16–28 (2007). This paper is one of the first to consider a role for endogenous DAMPs in the induction of eosinophilic inflammation.

    Article  CAS  PubMed  Google Scholar 

  30. Dvorak, A. M., Estrella, P. & Ishizaka, T. Vesicular transport of peroxidase in human eosinophilic myelocytes. Clin. Exp. Allergy 24, 10–18 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Melo, R. C. et al. Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic 6, 1047–1057 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Spencer, L. A. et al. Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc. Natl Acad. Sci. USA 103, 3333–3338 (2006). This work documents the complexity of receptor-mediated intracellular trafficking and its contributions to piecemeal degranulation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lacy, P. & Stow, J. L. Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood 118, 9–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Neves, J. S. et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc. Natl Acad. Sci. USA 105, 18478–18483 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neves, J. S. & Weller, P. F. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr. Opin. Immunol. 21, 694–699 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walsh, G. M. Antagonism of eosinophil accumulation in asthma. Recent Pat. Inflamm. Allergy Drug Discov. 4, 210–213 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Mackenzie, J., Mattes, J., Dent, L. & Foster, P. Eosinophils promote allergic disease of the lung by regulating CD4+ Th2 lymphocyte function. J. Immunol. 167, 3146–3155 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Mattes, J. et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J. Exp. Med. 195, 1433–1444 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang, H. B., Ghiran, I., Matthaei, K. & Weller, P. F. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J. Immunol. 179, 7585–7592 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Jacobsen, E. A. et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 205, 699–710 (2008). An intriguing manuscript in which the authors use the eosinophil-deficient TgPHIL mouse model to demonstrate eosinophil-dependent recruitment of effector T cells to the lungs of allergen-challenged mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jacobsen, E. A., Zellner, K. R., Colbert, D., Lee, N. A. & Lee, J. J. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J. Immunol. 87, 6059–6068 (2011).

    Article  Google Scholar 

  42. Spencer, L. A. et al. Human eosinophils constitutively express multiple Th1,Th2 and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 85, 117–123 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, H. B. & Weller, P. F. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 83, 817–821 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Chu, V. T. et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nature Immunol. 12, 151–159 (2011). In this study, the authors show that eosinophils and plasma cells colocalize in mouse bone marrow and that plasma cell survival is supported by the eosinophil secretory mediators APRIL and IL-6.

    Article  CAS  Google Scholar 

  45. Chu, V. T. & Berek, C. Immunization induces activation of bone marrow eosinophil required for plasma cell survival. Eur. J. Immunol. 42, 130–137 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Voehringer, D., van Rooijen, N. & Locksley, R. M. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 81, 1434–1444 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Dasgupta, P. & Keegan, A. D. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men. J. Innate Immun. 4, 478–488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Falcone, F. H. et al. Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection. J. Immunol. 167, 5348–5354 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Webb, D. et al. Expression of the Ym2 lectin-binding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: identification of a novel allergy-associated protein. J. Biol. Chem. 276, 41969–41976 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, D. et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243–247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lotfi, R. & Lotze, M. Eosinophils induce DC maturation, regulating immunity. J. Leukoc. Biol. 83, 456–460 (2008).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, D. et al. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood. 102, 3396–3403 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, D. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 205, 79–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Elishmereni, M. et al. Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy 66, 376–385 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Pearce, E. J. & MacDonald, A. S. The immunobiology of schistosomiasis. Nature Rev. Immunol. 2, 499–511 (2002).

    Article  CAS  Google Scholar 

  56. Sher, A., Coffman, R. L., Hieny, S. & Cheever, A. W. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J. Immunol. 145, 3911–3916 (1990).

    CAS  PubMed  Google Scholar 

  57. Swartz, J. M. et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood 108, 2420–2427 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sasaki, O., Sugaya, H., Ishida, K. & Yoshimura, K. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol. 15, 349–454 (1993).

    Article  CAS  PubMed  Google Scholar 

  59. Rotman, H. L. et al. Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Exp. Parasitol. 82, 267–278 (1996).

    Article  CAS  PubMed  Google Scholar 

  60. Eriksson, J. et al. The 434(G>C) polymorphism within the coding sequence of eosinophil cationic protein (ECP) correlates with the natural course of Schistosoma mansoni infection. Int. J. Parasitol. 37, 1359–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  61. Adu, B. et al. Polymorphisms in the RNASE3 gene are associated with susceptibility to cerebral malaria in Ghanaian children. PLoS ONE 6, e29465 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lehrer, R. I. et al. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 142, 4428–4434 (1989). This is one of the first papers to suggest an antimicrobial role for eosinophils.

    CAS  PubMed  Google Scholar 

  63. Rosenberg, H. F. Recombinant human eosinophil cationic protein: ribonuclease activity is not essential for cytotoxicity. J. Biol. Chem. 270, 7876–7881 (1995).

    Article  CAS  PubMed  Google Scholar 

  64. Torrent, M., Navarro, S., Moussaoui, M., Nogués, M. V. & Boix, E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry 47, 3544–3555 (2008).

    Article  CAS  PubMed  Google Scholar 

  65. Yousefi, S. et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nature Med. 14, 949–953 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. von Köckritz-Blickwede, M. & Nizet, V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. 87, 775–783 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Linch, S. N. et al. Mouse eosinophils possess potent antibacterial properties in vivo. Infect. Immun. 77, 4976–4982 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linch, S. N. et al. IL-5 is protective during sepsis in an eosinophil-independent manner. Am. J. Respir. Crit. Care Med. 186, 246–254 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Huang, J. et al. The effects of probiotics supplementation timing on an ovalbumin-sensitized rat model. FEMS Immunol. Med. Microbiol. 60, 132–141 (2010).

    Article  CAS  PubMed  Google Scholar 

  70. Yu, J. et al. The effects of Lactobacillus rhamnosus on the prevention of asthma in a murine model. Allergy Asthma Immunol. Res. 2, 199–205 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Rose, M. A., Schubert, R., Schulze, J. & Zielen, S. Follow-up of probiotic Lactobacillus GG effects on allergic sensitization and asthma in infants at risk. Clin. Exp. Allergy 41, 1819–1821 (2011).

    Article  CAS  PubMed  Google Scholar 

  72. Herbst, T. et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 184, 198–205 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Bisgaard, H. et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 128, 646–652 (2011).

    Article  PubMed  Google Scholar 

  74. Domachowske, J. B., Dyer, K. D., Bonville, C. A. & Rosenberg, H. F. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J. Infect. Dis. 177, 1458–1464 (1998). This is the first paper to propose a role for eosinophils in antiviral host defence.

    Article  CAS  PubMed  Google Scholar 

  75. Adamko, D. J., Yost, B. L., Gleich, G. J., Fryer, A. D. & Jacoby, D. B. Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, M2 muscarinic receptor dysfunction, and antiviral effects. J. Exp. Med. 190, 1465–1478 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Phipps, S. et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood 110, 1578–1586 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Davoine, F. et al. Virus-induced eosinophil mediator release requires antigen-presenting and CD4+ T cells. J. Allergy Clin. Immunol. 122, 69–77 (2008).

    Article  CAS  PubMed  Google Scholar 

  78. Dyer, K. D., Percopo, C. M., Fischer, E. R., Gabryszewski, S. J. & Rosenberg, H. F. Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood 114, 2649–2656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Skiest, D. J. & Keiser, P. Clinical significance of eosinophilia in HIV-infected individuals. Am. J. Med. 102, 449–453 (1997).

    Article  CAS  PubMed  Google Scholar 

  80. Manetti, R. et al. CD30 expression by CD8+ T cells producting type 2 helper cytokines. Evidence for large numbers of CD8+CD30+ T cell clones in human immunodeficiency virus infection. J. Exp. Med. 180, 2407–2411 (1994).

    Article  CAS  PubMed  Google Scholar 

  81. Empson, M., Bishop, G. A., Nightingale, B. & Garsia, R. Atopy, anergic status, and cytokine expression in HIV-infected subjects. J. Allergy Clin. Immunol. 103, 833–842 (1999).

    Article  CAS  PubMed  Google Scholar 

  82. Rugeles, M. T. et al. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS 17, 481–486 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Bochner, B. S. et al. Workshop report from the National Institutes of Health Taskforce on the Research Needs of Eosinophil-Associated Diseases (TREAD). J. Allergy Clin. Immunol. 130, 587–596 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bochner, B. S. & Gleich, G. J. What targeting eosinophils has taught us about their role in diseases. J. Allergy Clin. Immunol. 126, 16–25 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Foster, P. S., Rosenberg, H. F., Asquith, K. L. & Kumar, R. K. Targeting eosinophils in asthma. Curr. Mol. Med. 8, 585–590 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Flood-Page, P. et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 112, 1029–1036 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Menzies-Gow, A. et al. Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J. Allergy Clin. Immunol. 111, 714–719 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Leckie, M. J. et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 356, 2144–2148 (2000).

    Article  CAS  PubMed  Google Scholar 

  89. Flood-Page, P. et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 176, 1062–1071 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Gibson, P. G. Inflammatory phenotypes in adult asthma: clinical applications. Clin. Respir. J. 3, 198–206 (2009).

    Article  PubMed  Google Scholar 

  91. Anderson, G. P. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet 372, 1107–1109 (2008).

    Article  PubMed  Google Scholar 

  92. Nair, P. et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 360, 985–993 (2009).

    Article  CAS  PubMed  Google Scholar 

  93. Haldar, P. et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 360, 973–984 (2009). References 92 and 93 were the first two manuscripts to document a significant role for eosinophils in the pathogenesis of a specific asthma phenotype; patients were stratified for disease activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Castro, M. et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 184, 1125–1132 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Pavord, I. D. et al. Mepoliuzmab for severe eosinophilic asthma (DREAM): a multicenter, double-blind, placebo-controlled trial. Lancet 380, 651–659 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Molfino, N. A., Gossage, D., Kolbeck, R., Parker, J. M. & Geba, G. P. Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor. Clin. Exp. Allergy 42, 712–737 (2012).

    Article  CAS  PubMed  Google Scholar 

  97. Corren, J. et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 365, 1088–1098 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Furuta, G. T. Eosinophilic esophagitis: update on clinicopathological manifestations and pathophysiology. Curr. Opin. Gastroenterol. 27, 383–388 (2011).

    Article  PubMed  Google Scholar 

  99. Mueller, S., Aigner, T., Neureiter, D. & Stolte, M. Eosinophil infiltration and degranulation in oesophageal mucosa from adult patients with eosinophilic oesophagitis: a retrospective and comparative study on pathological biopsy. J. Clin. Pathol. 59, 1175–1180 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Blanchard, C. et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J. Clin. Invest. 116, 536–547 (2006). In this study, the authors found that CCL26 was the most highly induced gene in an extensive study of oesophageal tissue from patients with eosinophilic oesophagitis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sherrill, J. D. et al. Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. J. Allergy Clin. Immunol. 126, 160–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Mishra, A., Schlotman, J., Wang, M. & Rothenberg, M. E. Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. J. Leukoc. Biol. 81, 916–924 (2007).

    Article  CAS  PubMed  Google Scholar 

  103. Rayapudi, M. et al. Indoor insect allergens are potent inducers of experimental eosinophilic esophagitis in mice. J. Leukoc. Biol. 88, 337–346 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rubinstein, E. et al. Siglec-F inhibition reduces esophageal eosinophilia and angiogenesis in a mouse model of eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 53, 409–416 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zuo, L. et al. IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent, IL-13Rα2-inhibited pathway. J. Immunol. 185, 660–669 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Lucendo, A. J., De Rezende, L., Comas, C., Caballero, T. & Bellón, T. Treatment with topical steroids downregulates IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression in eosinophilic esophagitis. Am. J. Gastroenterol. 103, 2184–2193 (2008).

    Article  CAS  PubMed  Google Scholar 

  107. Straumann, A. et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut 59, 21–30 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Assa'ad, A. H. et al. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology 141, 1593–1604 (2011).

    Article  CAS  PubMed  Google Scholar 

  109. Conus, S., Straumann, A., Bettler, E. & Simon, H. U. Mepolizumab does not alter levels of eosinophils, T cells, and mast cells in the duodenal mucosa in eosinophilic esophagitis. J. Allergy Clin. Immunol. 126, 175–177 (2010).

    Article  CAS  PubMed  Google Scholar 

  110. Varga, J. & Kahari, V. M. Eosinophilia–myalgia syndrome, eosinophilic fasciitis, and related fibrosing disorders. Curr. Opin. Rheumatol. 9, 562–570 (1997).

    Article  CAS  PubMed  Google Scholar 

  111. Krahn, M. et al. CAPN3 mutations in patients with idiopathic eosinophilic myositis. Ann. Neurol. 59, 905–911 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Kramerova, I., Kudryashova, E., Tidball, J. G. & Spencer, M. J. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 13, 1373–1388 (2004).

    Article  CAS  PubMed  Google Scholar 

  113. Cools, J. et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 348, 1201–1214 (2003). This manuscript provided the first evidence for the use of a receptor tyrosine kinase inhibitor, imatinib, as a disease-directed therapy for a specific variant of hypereosinophilic syndrome.

    Article  CAS  PubMed  Google Scholar 

  114. Valent, P. et al. Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev. Hematol. 5, 157–176 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cools, J. et al. The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood 103, 2802–2805 (2004).

    Article  CAS  PubMed  Google Scholar 

  116. Stover, E. H. et al. Activation of FIP1L1–PDGFRα requires disruption of the juxtamembrane domain of PDGFRα and is FIP1L1-independent. Proc. Natl Acad. Sci. USA 103, 8078–8083 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Roufosse, F. et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J. Allergy Clin. Immunol. 126, 828–835 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ogbogu, P. U. et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J. Allergy Clin. Immunol. 124, 1319–1325 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Valent, P. et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 130, 607–612 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Cools, J. et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1–PDGFRα-induced myeloproliferative disease. Cancer Cell 3, 459–469 (2003).

    Article  CAS  PubMed  Google Scholar 

  121. Yamada, Y., Cancelas, J. A. & Rothenberg, M. E. Murine model of hypereosinophilic syndromes/chronic eosinophilic leukemia. Int. Arch. Allergy Immunol. 149 (Suppl. 1), 102–107 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Häcker, H., Chi, L., Rehg, J. E. & Redecke, V. NIK prevents the development of hypereosinophilic syndrome-like disease in mice independent of IKKα activation. J. Immunol. 188, 4602–4610 (2012).

    Article  CAS  PubMed  Google Scholar 

  123. Pease, J. E. & Williams, T. J. Eotaxin and asthma. Curr. Opin. Pharmacol. 1, 248–253 (2001).

    Article  CAS  PubMed  Google Scholar 

  124. Takatsu, K., Kouro, T. & Nagai, Y. Interleukin-5 in the link between innate and acquired immune response. Adv. Immunol. 101, 191–236 (2009).

    Article  CAS  PubMed  Google Scholar 

  125. Wechsler, M. E. et al. Novel targeted therapies for eosinophilic disorders. J. Allergy Clin. Immunol. 130, 563–571 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Lloyd, C. M. & Rankin, S. M. Chemokines in allergic airway disease. Curr. Opin. Pharmacol. 3, 443–448 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bochner, B. S. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin. Exp. Allergy 39, 317–324 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kiwamoto, T., Kawasaki, N., Paulson, J. C. & Bochner, B. S. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 135, 327–336 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hudson, S. A., Bovin, N. V., Schnaar, R. L., Crocker, P. R. & Bochner, B. S. Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6′- sulfated sialyl Lewis X. J. Pharmacol. Exp. Ther. 330, 608–612 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kvarnhammar, A. M. & Cardell, L. O. Pattern recognition receptors in human eosinophils. Immunology 136, 11–20 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Månsson, A. & Cardell, L. O. Role of atopic status in Toll-like receptor (TLR)7- and TLR9-mediated activation of human eosinophils. J. Leukoc. Biol. 85, 719–727 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Ackerman, S. J. & Bochner, B. S. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol. Allergy Clin. North Am. 27, 357–375 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Bedi, R., Du, J., Sharma, A. K., Gomes, I. & Ackerman, S. J. Human C/EBP-ε activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood 113, 317–327 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mori, Y. et al. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 206, 183–193 (2009). In this study, the authors define the cell-surface antigen profile of a fully committed eosinophil progenitor in human bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Iwasaki, H. et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J. Exp. Med. 201, 1891–1897 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Southam, D. S. et al. Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J. Allergy Clin. Immunol. 115, 95–102 (2005).

    Article  CAS  PubMed  Google Scholar 

  137. Busse, W. W., Ring, J., Huss-Marp, J. & Kahn, J. E. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J. Allergy Clin. Immunol. 125, 803–813 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Foster, P., Hogan, S., Ramsay, A., Matthaei, K. & Young, I. Interleukin-5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 183, 195–201 (1996).

    Article  CAS  PubMed  Google Scholar 

  139. Humbles, A. A. et al. A critical role for eosinophils in allergic airways remodeling. Science 305, 1776–1779 (2004).

    Article  CAS  PubMed  Google Scholar 

  140. Walsh, E. R. et al. Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma. J. Exp. Med. 205, 1285–1292 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Hertzman, P. A. et al. Association of the eosinophilia–myalgia syndrome with the ingestion of tryptophan. N. Engl. J. Med. 322, 869–873 (1990).

    Article  CAS  PubMed  Google Scholar 

  142. Mayeno, A. N. et al. Characterization of “peak E”, a novel amino acid associated with eosinophilia–myalgia syndrome. Science 250, 1707–1708 (1990).

    Article  CAS  PubMed  Google Scholar 

  143. Smith, M. J. & Garrett, R. H. A heretofore undisclosed crux of eosinophilia–myalgia syndrome: compromised histamine degradation. Inflamm. Res. 54, 435–450 (2005).

    Article  CAS  PubMed  Google Scholar 

  144. Okada, S. et al. Immunogenetic risk and protective factors for development of L-tryptophan-associated eosinophilia–myalgia syndrome and associated symptoms. Arthritis Rheum. 61, 1305–1311 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Allen, J. A. Post-epidemic eosinophilia–myalgia syndrome associated with L-tryptophan. Arthritis Rheum. 63, 3633–3639 (2011).

    Article  CAS  PubMed  Google Scholar 

  146. Haskell, M. D., Moy, J. N., Gleich, G. J. & Thomas, L. L. Analysis of signaling events associated with activation of neutrophil superoxide anion production by eosinophil granule major basic protein. Blood 86, 4627–4637 (1995).

    CAS  PubMed  Google Scholar 

  147. Munitz, A. & Levi-Schaffer, F. Eosinophils: 'new' roles for 'old' cells. Allergy 59, 268–275 (2004).

    Article  CAS  PubMed  Google Scholar 

  148. Dyer, K. D., Garcia-Crespo, K. E., Killoran, K. E. & Rosenberg, H. F. Antigen profiles for the quantitative assessment of eosinophils in mouse tissues by flow cytometry. J. Immunol. Methods 369, 91–97 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Meyerholz, D. K., Griffin, M. A., Castilow, E. M. & Varga, S. M. Comparison of histochemical methods for murine eosinophil detection in an RSV vaccine-enhanced inflammation model. Toxicol. Pathol. 37, 249–255 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Yamaguchi, Y. et al. Models of lineage switching in hematopoietic development: a new myeloid-committed eosinophil cell line (YJ) demonstrates trilineage potential. Leukemia 12, 1430–1439 (1998).

    Article  CAS  PubMed  Google Scholar 

  151. Histoshi, Y. et al. Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5)+ B cells. J. Immunol. 144, 4218–4225 (1990).

    Google Scholar 

  152. Wise, E. L., Bonner, K. T., William, T. J. & Pease, J. E. A single nucleotide polymorphism in the CCR3 gene ablates receptor export to the plasma membrane. J. Allergy Clin. Immunol. 126, 150–157 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Willetts, L. et al. Immunodetection of occult eosinophils in lung tissue biopsies may help predict survival in acute lung injury. Respir. Res. 12, 116 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Macias, M. P. et al. Identification of a new murine eosinophil major basic protein (mMBP) gene: cloning and characterization of mMBP-2. J. Leukoc. Biol. 67, 567–576 (2000).

    Article  CAS  PubMed  Google Scholar 

  155. Ito, W. et al. Hepatocyte growth factor suppresses production of reactive oxygen species and release of eosinophil-derived neurotoxin from human eosinophils. Int. Arch. Allergy Immunol. 147, 331–337 (2008).

    Article  CAS  PubMed  Google Scholar 

  156. Ochkur, S. I. et al. The development of a sensitive and specific ELISA for mouse eosinophil peroxidase: assessment of eosinophil degranulation ex vivo and in models of human disease. J. Immunol. Methods 375, 138–147 (2012).

    Article  CAS  PubMed  Google Scholar 

  157. Blyth, D. I., Wharton, T. F., Pedrick, M. S., Savage, T. J. & Sanjar, S. Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am. J. Respir. Cell. Mol. Biol. 23, 241–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  158. Grimaldi, J. C. et al. Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3). J. Leukoc. Biol. 65, 846–853 (1999).

    Article  CAS  PubMed  Google Scholar 

  159. Song, D. J. et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J. Immunol. 183, 5333–5341 (2009).

    Article  CAS  PubMed  Google Scholar 

  160. Dyer, K. D. et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol. 181, 4004–4009 (2008).

    Article  CAS  PubMed  Google Scholar 

  161. Kopf, M. et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity 4, 15–24 (1996). This is the first description of a mouse model devoid of the eosinophilopoietic cytokine IL-5.

    Article  CAS  PubMed  Google Scholar 

  162. Yoshida, T. et al. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5Rα-deficient mice. Immunity 4, 483–494 (1996).

    Article  CAS  PubMed  Google Scholar 

  163. Dent, L. A., Strath, M., Mellor, A. L. & Sanderson, C. J. Eosinophilia in transgenic mice expressing interleukin 5. J. Exp. Med. 172, 1425–1431 (1990).

    Article  CAS  PubMed  Google Scholar 

  164. Lee, N. A. et al. Expression of IL-5 in thymocytes/ T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies. J. Immunol. 158, 1332–1344 (1997).

    CAS  PubMed  Google Scholar 

  165. Rothenberg, M. E., MacLean, J. A., Pearlman, E., Luster, A. D. & Leder, P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 185, 785–790 (1995).

    Article  Google Scholar 

  166. Pope, S. M. et al. Identification of a cooperative mechanism involving interleukin-13 and eotaxin-2 in experimental allergic lung inflammation. J. Biol. Chem. 280, 13952–13961 (2005).

    Article  CAS  PubMed  Google Scholar 

  167. Pope, S. M., Zimmermann, N., Stringer, K. F., Karow, M. L. & Rothenberg, M. E. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J. Immunol. 175, 5341–5350 (2005).

    Article  CAS  PubMed  Google Scholar 

  168. Ochkur, S. I. et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J. Immunol. 178, 7879–7889 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Humbles, A. A. et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl Acad. Sci. USA 99, 1479–1484 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, M. et al. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eoisnophils. Blood 109, 4280–4287 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Leckie, M. J. Anti-interleukin-5 monoclonal antibodies: preclinical and clinical evidence in asthma models. Am. J. Resp. Med. 2, 245–259 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank R. Dreyfuss (Medical Arts Branch, Office of the Director, US National Institutes of Health (NIH)) for photographic images and E. R. Fischer (Research Technologies Section, Rocky Mountain Laboratories, US National Institute of Allergy and Infectious Diseases (NIAID), NIH) for preparing the transmission electron micrograph of the mouse eosinophil. H.F.R. receives funding from the NIAID Division of Intramural Research (grants AI000941 and AI000943); P.S.F. receives funding from the National Health and Medical Research Council of Australia and fellowship support from the Harvard Club of Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helene F. Rosenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1 (table)

Disorders associated with eosinophilia and/or eosinophil accumulation in organs and tissues (PDF 100 kb)

Related links

Related links

FURTHER INFORMATION

Helene F. Rosenberg's homepage

Glossary

Innate lymphoid cells

Cells that produce cytokines typically attributed to T helper cell subsets (for example, IL-5) but that have no rearranged antigen-specific receptors.

Alarmin

A term used to describe endogenous molecules that interact with pattern- recognition receptors and thereby signal danger to the host. These molecules are typically released from necrotic cells and complement the function of the more familiar pathogen-associated molecular patterns. Examples discussed in this Review include HMGB1 and IL-33. Another name for an alarmin is a damage- or danger-associated molecular pattern.

Cytolytic degranulation

A mechanism through which eosinophils lyse, thereby releasing either free granule proteins or fully intact granules. This renders the cells non-viable. Intact granules released in this manner can respond to physiological secretagogues.

Piecemeal degranulation

A mechanism through which eosinophils (as well as basophils and mast cells) release specific mediators from cytoplasmic granules by transporting them to the cell surface in membrane-bound cytoplasmic vesicles. The eosinophils remain viable and fully responsive to subsequent stimuli.

Secretagogues

Substances that induce the secretion of another substance from a cell or storage granule.

Promyelocyte

A cell in the bone marrow that has differentiated from a haematopoietic stem cell and that will ultimately generate mature granulocytes, including neutrophils, basophils and eosinophils. A promyelocyte can be identified in bone marrow smears as a relatively large cell with a full, non-condensed nucleus and lineage-specific cytoplasmic granules.

Common myeloid progenitors

(CMPs). In current models of haematopoiesis, the most primitive cells are multipotent, self-renewing haematopoietic stem cells. By definition, CMPs are the subset of progenitor cells that are capable of generating all myeloid cells (that is, monocytes, macrophages, dendritic cells, erythrocytes, megakaryocytes, platelets, basophils, eosinophils and neutrophils) under appropriate cytokine stimulation, but that are no longer capable of generating cells of the lymphoid lineages (such as B cells, T cells and NK cells).

Granulocyte–macrophage progenitors

(GMPs). By definition, GMPs are the subset of progenitor cells that are capable of generating monocytes, macrophages and all granulocyte lineages (that is, basophils, eosinophils and neutrophils), but not the other lineages. However, as noted in the text, human eosinophils are not derived from the cells currently identified as GMPs.

Alternatively activated macrophages

One of the major differences between these cells and classically activated macrophages is that these macrophages are not primed with IFN. Instead, alternatively activated macrophages are stimulated by TH2-type cytokines (such as IL-4 or IL-13) and present soluble antigens to T cells. Alternatively activated macrophages release CCL17, CCL18, CCL22, IL-10, TGF, YM1, YM2 and RELM, and they characteristically function to promote the resolution of inflammation.

Nurse cells

As used in this Review, this term refers to skeletal muscle cells that have been infected with the larval forms of Trichinella species parasites. A capillary network forms around the nurse cells, which provides crucial support for the parasites as they develop.

Neutrophil extracellular traps

(NETs). Fibrous networks that are released into the extracellular environment by neutrophils. They are composed mainly of DNA, but also contain proteins from neutrophil granules. NETs act as a mesh that traps microorganisms and exposes them to neutrophil-derived effector molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenberg, H., Dyer, K. & Foster, P. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol 13, 9–22 (2013). https://doi.org/10.1038/nri3341

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri3341

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing