Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Roles of Fc receptors in autoimmunity

Key Points

  • Fc receptors for immunoglobulin G (FcγRs) link humoral and cellular immunity by binding antigen–IgG immune complexes and internalizing the complexes for efficient antigen presentation. FcγRs comprise many activating-type receptors and a unique inhibitory receptor, FcγRIIB.

  • FcγRIIB is a crucial element of peripheral tolerance. Its absence renders B cells and effector cells hyperresponsive to autoantigens.

  • In the absence of the Fc-receptor common γ-chain, a pivotal adaptor for activating signalling, mouse models do not develop spontaneous or induced autoimmune disease due to the lack of activation of effector cells, such as macrophages.

  • FcγRIIb-deficient mice have enhanced responses in some autoimmune disease models. Spontaneous onset of disease is sometimes observed in the mutant mice.

  • Enhanced antigen presentation by Fc receptors on dendritic cells can be an important step in the development of some T-cell-mediated autoimmune diseases.

  • Polymorphisms in the ectodomains of human FcγRs are risk factors for autoimmune diseases.

  • Some polymorphisms are found in the human FcγRIIB gene, but information on their relation to autoimmune diseases is still required.

  • The dynamics of the intimate collaboration between activating and inhibitory FcγRs might determine the balance between tolerance and autoimmunity.

Abstract

The receptors for the Fc of immunoglobulins, Fc receptors (FcRs), link the humoral and cellular branches of the immune system, and they have important functions in the activation and down-modulation of immune responses. Balanced signalling through activating and inhibitory FcRs regulates the activity of various cells in the immune system. Recent work in animal models indicates that the development of many human autoimmune diseases might be caused by impairment of the FcR regulatory system. This review provides an overview of the mechanisms of FcR-based immune regulation and describes how autoimmune disease might result from its dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Main functions of Fc receptors.
Figure 2: Signalling mechanisms of ITAM- and ITIM-induced regulatory FcR signalling.
Figure 3: Overall view of activating Fc receptors and inhibitory FcγRIIB, and related autoimmune diseases.

Similar content being viewed by others

References

  1. Sinclair, N. R., Lees, R. K. & Elliott, E. V. Role of the Fc fragment in the regulation of the primary immune response. Nature 220, 1048–1049 (1968).

    Article  CAS  PubMed  Google Scholar 

  2. Sinclair N. R. Fc-signalling in the modulation of immune responses by passive antibody. Scand. J. Immunol. 53, 322–330 (2001).This paper provides an historical overview of antibody-mediated activation and suppression of immune responses.

    Article  CAS  PubMed  Google Scholar 

  3. Paraskevas, F., Lee, S. T., Orr, K. B. & Israels, G. A receptor for Fc on mouse B lymphocytes. J. Immunol. 108, 1319–1327 (1972).

    CAS  PubMed  Google Scholar 

  4. Amigorena, S. & Bonnerot, C. Fc receptor signaling and trafficking: a connection for antigen processing. Immunol. Rev. 172, 279–284 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Fridman, W. H. et al. Structural bases of Fcγ receptor functions. Immunol. Rev. 125, 49–76 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Durum, S. K., Lee, C.-K., Geiman, T. M., Murphy, W. J. & Muegge, K. CD16 cross-linking blocks rearrangement of the TCRβ locus and development of αβ T cells and induces development of NK cells from thymic progenitors. J. Immunol. 161, 3325–3329 (1998).

    CAS  PubMed  Google Scholar 

  7. de Andres, B., Mueller, A. L., Verbeek, S., Sandor, M. & Lynch, R. G. A regulatory role for Fcγ receptors CD16 and CD32 in the development of murine B cells. Blood 92, 2823–2829 (1998).

    CAS  PubMed  Google Scholar 

  8. Kato, I., Takai, T. & Kudo, A. FcγRIIB negatively regulates the pre-BCR signaling for apoptosis. J. Immunol. 168, 629–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J. V. FcR γ-chain deletion results in pleiotrophic effector-cell defects. Cell 76, 519–529 (1994).Describes multiple immune-system defects in FcRγ-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  10. Sylvestre, D. L. & Ravetch, J. V. Fc receptors initiate the Arthus reaction: redefining the inflammatory cascade. Science 265, 1095–1098 (1994).Opens the discussion on the dominant role of Fc receptors over complement.

    Article  CAS  PubMed  Google Scholar 

  11. Clynes, R. & Ravetch, J. V. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity 3, 21–26 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Clynes, R. et al. Modulation of immune-complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189, 179–186 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sylvestre, D. L. & Ravetch, J. V. A dominant role for mast-cell Fc receptors in the Arthus reaction. Immunity 5, 387–390 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Hazenbos, W. L. W. et al. Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16)-deficient mice. Immunity 5, 181–188 (1996).The first description of the phenotypes of FcγRIII-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  15. Ujike, A. et al. Modulation of IgE-mediated systemic anaphylaxis by low-affinity Fc receptors for IgG. J. Exp. Med. 189, 1573–1579 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Barnes, N. et al. FcγRI-deficient mice show multiple alterations to inflammatory and immune responses. Immunity 16, 379–389 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Ioan-Facsinay, A. et al. FcγRI (CD64) contributes substantially to severity of arthritis, hypersensitivity responses, and protection from bacterial infection. Immunity 16, 391–402 (2002).References 16 and 17 describe several noteworthy aspects of FcγRI-deficient mice.

    Article  CAS  PubMed  Google Scholar 

  18. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J. V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).The first description of FcγRIIb-deficient mice, showing that FcγRIIb is an inhibitory receptor in vivo.

    Article  CAS  PubMed  Google Scholar 

  19. van de Winkel, J. G. J. & Capel, P. J. A. Human IgG Fc receptor heterogeneity: molecular aspects and clinical implications. Immunol. Today 14, 215–221 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Shibuya, A. et al. Fcα/μ receptor mediates endocytosis of IgM-coated microbes. Nature Immunol. 1, 441–446 (2000).

    Article  CAS  Google Scholar 

  21. Launay, P. et al. Fcα receptor (CD89) mediates the development of immunoglobulin A (IgA) nephropathy (Berger's disease). Evidence for pathogenic soluble receptor–IgA complexes in patients and CD89 transgenic mice. J. Exp. Med. 191, 1999–2009 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McDonald, K. J., Cameron, A. J., Allen, J. M. & Jardine, A. G. Expression of Fcα/μ receptor by human mesangial cells: a candidate receptor for immune-complex deposition in IgA nephropathy. Biochem. Biophys. Res. Commun. 290, 438–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Davis, R. S., Wang, Y.-H., Kubagawa, H. & Cooper, M. D. Identification of a family of Fc-receptor homologs with preferential B-cell expression. Proc. Natl Acad. Sci. USA 98, 9772–9777 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hatzivassiliou, G. et al. IRTA1 and IRTA2, novel immunoglobulin superfamily receptors expressed in B cells and involved in chromosome 1q21 abnormalities in B-cell malignancy. Immunity 14, 277–289 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Rigby, L. J. et al. Domain one of the high-affinity IgE receptor, FcɛRI, regulates binding to IgE through its interface with domain two. J. Biol. Chem. 275, 9664–9672 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Rigby, L. J. et al. Monoclonal antibodies and synthetic peptides define the active site of FcγRI and a potential receptor antagonist. Allergy 55, 609–619 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sondermann, P., Huber, R., Oosthuizen, V. & Jacob, U. The 3.2-Å crystal structure of the human IgG1 Fc fragment–FcγRIII complex. Nature 406, 267–273 (2000).Detailed three-dimensional structural analysis of the FcγR–IgG interaction, providing an insight into the unique binding stoichiometry of FcγRs and IgG.

    Article  CAS  PubMed  Google Scholar 

  28. Takai, T. & Ravetch, J. V. In Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity (eds van de Winkel, J. G. J. & Hogarth, P. M.) 37–48 (Kluwer Academic Publishers, Netherlands, 1998).

    Book  Google Scholar 

  29. Ravetch, J. V. & Lanier, L. L. Immune inhibitory receptors. Science 290, 84–89 (2000).Provides an intriguing overview of inhibitory receptors in Fc- and NK-receptor families.

    Article  CAS  PubMed  Google Scholar 

  30. Takai, T. & Ono, M. Activating and inhibitory nature of the murine paired immunoglobulin-like receptor family. Immunol. Rev. 181, 215–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Ravetch, J. V. & Clynes, R. A. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 16, 421–432 (1998).An excellent review of the crucial roles of Fc receptors in immunity.

    Article  CAS  PubMed  Google Scholar 

  32. Ravetch, J. V. & Bolland, S. IgG Fc receptors. Annu. Rev. Immunol. 19, 275–290 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, A. V., Scholl, P. R. & Geha, R. S. Physical and functional association of the high-affinity immunoglobulin G receptor (FcγRI) with the kinases Hck and Lyn. J. Exp. Med. 180, 1165–1170 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Ghazizadeh, S., Bolen, J. B. & Fleit, H. B. Physical and functional association of Src-related protein tyrosine kinases with FcγRII in monocytic THP-1 cells. J. Biol. Chem. 269, 8878–8884 (1994).

    CAS  PubMed  Google Scholar 

  35. Pricop, L. et al. Differential modulation of stimulatory and inhibitory Fcγ receptors on human monocytes by TH1 and TH2 cytokines. J. Immunol. 166, 531–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Kwiatkowska, K. & Sobota, A. The clustered Fcγ receptor II is recruited to Lyn-containing membrane domains and undergoes phosphorylation in a cholesterol-dependent manner. Eur. J. Immunol. 31, 989–998 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Muta, T. et al. A 13-amino-acid motif in the cytoplasmic domain of FcγRIIB modulates B-cell-receptor signalling. Nature 368, 70–73 (1994).

    Article  CAS  PubMed  Google Scholar 

  38. D'Ambrosio, D. et al. Recruitment and activation of PTP-1C in negative regulation of antigen-receptor signaling by FcγRIIB1. Science 268, 293–297 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Damen, J. E. et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase. Proc. Natl Acad. Sci. USA 93, 1689–1693 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ono, M., Bolland, S., Tempst, P. & Ravetch, J. V. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor FcγRIIB. Nature 383, 263–266 (1996).Demonstrates, for the first time, the recruitment of SHIP to FcγRIIB.

    Article  CAS  PubMed  Google Scholar 

  41. Ono, M. et al. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell 90, 293–301 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Fong, D. C. et al. Selective in vivo recruitment of the phosphatidylinositol phosphatase SHIP by phosphorylated FcγRIIB during negative regulation of IgE-dependent mouse mast-cell activation. Immunol. Lett. 54, 83–91 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Gupta, N. et al. Negative signaling pathways of the killer-cell inhibitory receptor and FcγRIIb1 require distinct phosphatases. J. Exp. Med. 186, 473–478 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nakamura, K., Brauweiler, A. & Cambier, J. C. Effects of Src homology domain 2 (SH2)-containing inositol phosphatase (SHIP), SH2-containing phosphotyrosine phosphatase (SHP)-1, and SHP-2 SH2 decoy proteins on FcγRIIB1-effector interactions and inhibitory functions. J. Immunol. 164, 631–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Scharenberg, A. M. et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17, 1961–1972 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fluckiger, A. C. et al. Btk/Tec kinases regulate sustained increases in intracellular Ca2+ following B-cell-receptor activation. EMBO J. 17, 1973–1985 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bolland, S., Pearse, R. N., Kurosaki, T. & Ravetch, J. V. SHIP modulates immune-receptor responses by regulating membrane association of Btk. Immunity 8, 509–516 (1998).

    Article  CAS  PubMed  Google Scholar 

  48. Liu, Q. et al. The inositol polyphosphate 5-phosphatase SHIP is a crucial negative regulator of B-cell antigen-receptor signaling. J. Exp. Med. 188, 1333–1342 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Aman, M. J., Lamkin, T. D., Okada, H., Kurosaki, T. & Ravichandran, K. S. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J. Biol. Chem. 273, 33922–33928 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Helgason, C. D. et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of B lymphocytes in Ship−/− mice. J. Exp. Med. 191, 781–794 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tridandapani, S. et al. Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fcγ immunoreceptor tyrosine-based inhibition motif peptide motif. Mol. Cell. Biol. 17, 4305–4311 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tamir, I. et al. The RasGAP-binding protein p62dok is a mediator of inhibitory FcγRIIB signals in B cells. Immunity 12, 347–358 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Tridandapani, S., Chacko, G. W., Van Brocklyn, J. R. & Coggeshall, K. M. Negative signaling in B cells causes reduced Ras activity by reducing Shc–Grb2 interactions. J. Immunol. 158, 1125–1132 (1997).

    CAS  PubMed  Google Scholar 

  54. Hashimoto, A. et al. Involvement of guanosine triphosphatases and phospholipase C-γ2 in extracellular signal-regulated kinase, c-Jun NH2-terminal kinase, and p38 mitogen-activated protein kinase activation by the B-cell antigen receptor. J. Exp. Med. 188, 1287–1295 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamanashi, Y. et al. Role of the rasGAP-associated docking protein p62dok in negative regulation of B-cell-receptor-mediated signaling. Genes Dev. 14, 11–16 (2000).Demonstrates the crucial role of Dok in FcγRIIb-mediated B-cell inhibition using Dok-deficient mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Hippen, K. L. et al. FcγRIIB1 inhibition of BCR-mediated phosphoinositide hydrolysis and Ca2+ mobilization is integrated by CD19 dephosphorylation. Immunity 7, 49–58 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. Ashman, R. F., Peckham, D. & Stunz, L. L. Fc receptor off-signal in the B cell involves apoptosis. J. Immunol. 157, 5–11 (1996).

    CAS  PubMed  Google Scholar 

  58. Pearse, R. N. et al. SHIP recruitment attenuates FcγRIIB-induced B-cell apoptosis. Immunity 10, 753–760 (1999).Introduces the unexpected role of FcγRIIB in inducing apoptosis in B cells.

    Article  CAS  PubMed  Google Scholar 

  59. Regnault, A. et al. Fcγ-receptor-mediated induction of dendritic-cell maturation and major histocompatibility complex class-I-restricted antigen presentation after immune-complex internalization. J. Exp. Med. 189, 371–380 (1999).Provides evidence of the important role of FcγRs on dendritic cells for the enhancement of antigen presentation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Booth, J. W., Kim, M.-K., Jankowski, A., Schreiber, A. D. & Grinstein, S. Contrasting requirements for ubiquitylation during Fc-receptor-mediated endocytosis and phagocytosis. EMBO J. 21, 251–258 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Machy, P., Serre, K. & Leserman, L. Class-I-restricted presentation of exogenous antigen acquired by Fcγ-receptor-mediated endocytosis is regulated in dendritic cells. Eur. J. Immunol. 30, 848–857 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Hamano, Y., Arase, H., Saisho, H. & Saito, T. Immune complex and Fc-receptor-mediated augmentation of antigen presentation for in vivo TH-cell responses. J. Immunol. 164, 6113–6119 (2000).

    Article  CAS  PubMed  Google Scholar 

  63. Watanabe, N. et al. Mast cells induce autoantibody-mediated vasculitis syndrome through tumor-necrosis factor production upon triggering Fcγ receptors. Blood 94, 3855–3863 (1999).

    CAS  PubMed  Google Scholar 

  64. Hazenbos, W. L. W. et al. Murine IgG1 complexes trigger immune effector functions predominantly via FcγRIII (CD16). J. Immunol. 161, 3026–3032 (1998).

    CAS  PubMed  Google Scholar 

  65. Clynes, R., Dumitru, C. & Ravetch, J. V. Uncoupling of immune-complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052–1054 (1998).

    Article  CAS  PubMed  Google Scholar 

  66. Suzuki, Y. et al. Distinct contribution of Fc receptors and angiotensin-II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int. 54, 1166–1174 (1998).

    Article  CAS  PubMed  Google Scholar 

  67. Park, S. Y. et al. Resistance of Fc-receptor-deficient mice to fatal glomerulonephritis. J. Clin. Invest. 102, 1229–1238 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dombrowicz, D. et al. Absence of FcɛRI α-chain results in upregulation of FcγRIII-dependent mast-cell degranulation and anaphylaxis. Evidence of competition between FcɛRI and FcγRIII for limiting amounts of FcR β- and γ-chain. J. Clin. Invest. 99, 915–925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dombrowicz, D., Flamand, V., Brigman, K. K., Koller, B. H. & Kinet, J.-P. Abolition of anaphylaxis by targeted disruption of the high-affinity immunoglobulin E receptor α-chain gene. Cell 75, 969–976 (1993).

    Article  CAS  PubMed  Google Scholar 

  70. Schiller, C. et al. Mouse FcγRII is a negative regulator of FcγRIII in IgG immune-complex-triggered inflammation but not in autoantibody-induced hemolysis. Eur. J. Immunol. 30, 481–490 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Kleinau, S., Martinsson, P. & Heyman, B. Induction and suppression of collagen-induced arthritis is dependent on distinct Fcγ receptors. J. Exp. Med. 191, 1611–1616 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yuasa, T. et al. Deletion of FcγRIIB renders H-2b mice susceptible to collagen-induced arthritis. J. Exp. Med. 189, 187–194 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Jiang, Y. et al. Polymorphisms in IgG Fc receptor IIB regulatory regions associated with autoimmune susceptibility. Immunogenetics 51, 429–435 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Pritchard, N. R. et al. Autoimmune-prone mice share a promoter haplotype associated with reduced expression and function of the Fc receptor FcγRII. Curr. Biol. 10, 227–230 (2000).

    Article  CAS  PubMed  Google Scholar 

  75. Courtenay, J. S., Dallman, M. J., Dayan, A. D., Marten, A. & Mosedale, B. Immunization against heterologous type II collagen induces arthritis in mice. Nature 283, 666–668 (1980).

    Article  CAS  PubMed  Google Scholar 

  76. Svensson, L., Jirholt, J., Holmdahl, R. & Jansson, L. B-cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clin. Exp. Immunol. 111, 521–526 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stuart, J. M. & Dixon, F. J. (1983) Serum transfers of collagen-induced arthritis in mice. J. Exp. Med. 158, 378–392 (1983).

    Article  CAS  PubMed  Google Scholar 

  78. Wooley, P. H., Luthra, H. S., Stuart, J. M. & David, S. C. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I-region) linkage and antibody correlates. J. Exp. Med. 154, 688–700 (1981).

    Article  CAS  PubMed  Google Scholar 

  79. Holmdahl, R. et al. Type II collagen autoimmunity in animals and provocations leading to arthritis. Immunol. Rev. 118, 193–232 (1990).

    Article  CAS  PubMed  Google Scholar 

  80. Kalluri, R. Goodpasture syndrome. Kidney Int. 55, 1120–1122 (1999).

    Article  CAS  PubMed  Google Scholar 

  81. Savage, C. O., Pusey, C. D., Bowman, C., Rees, A. J. & Lockwood, C. M. Antiglomerular basement membrane antibody-mediated disease in the British Isles. Br Med J (Clin Res Ed) 292, 301–304 (1986).

    Article  CAS  Google Scholar 

  82. Nakamura, A. et al. Fcγ-receptor-IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J. Exp. Med. 191, 899–906 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bolland, S. & Ravetch, J. V. Spontaneous autoimmune disease in FcγRIIB-deficient mice results from strain-specific epistasis. Immunity 13, 277–285 (2000).References 12, 71, 72, 82 and 83 describe the direct relationship of FcγRIIb defects with different types of autoimmunity.

    Article  CAS  PubMed  Google Scholar 

  84. Bolland, S., Yim, Y.-S., Tus, K., Wakeland, E. K. & Ravetch, J. V. Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J. Exp. Med. 195, 1167–1174 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Luan, J. J. et al. Defective FcγRII gene expression in macrophages of NOD mice: genetic linkage with up-regulation of IgG1 and IgG2b in serum. J. Immunol. 157, 4707–4716 (1996).

    CAS  PubMed  Google Scholar 

  86. Jordan, M. A. et al. Linkage analysis of systemic lupus erythematosus induced in diabetes-prone nonobese diabetic mice by Mycobacterium bovis. J. Immunol. 165, 1673–1684 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Myhr, K. M., Raknes, G., Nyland, H. & Vedeler, C. Imunoglobulin G Fc-receptor (FcγR) IIA and IIIB polymorphisms related to disability in MS. Neurology 52, 1771–1776 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Abdul-Majid, K.-B. et al. Fc receptors are critical for autoimmune inflammatory damage to the central nervous system in experimental autoimmune encephalomyelitis. Scand. J. Immunol. 55, 70–81 (2002).Indicates the importance of FcγRs to T-cell-mediated autoimmunity, such as EAE.

    Article  CAS  PubMed  Google Scholar 

  89. Bakker, A. B. H. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13, 345–353 (2000).

    Article  CAS  PubMed  Google Scholar 

  90. Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13, 355–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  91. Kyogoku, C. et al. Association of Fcγ receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to the genetic susceptibility to SLE. Arthritis Rheum. 46, 1242–1254 (2002).Describes FcγRIIB polymorphisms and their relation to SLE.

    Article  CAS  PubMed  Google Scholar 

  92. Salmon, E. & Kimberly, R. P. In The Immunoglobulin Receptors and their Physiological and Pathological Roles in Immunity (eds van de Winkel, J. G. J. & Hogarth, P. M.) 267–278 (Kluwer Academic Publishers, Great Britain, 1998).

    Book  Google Scholar 

  93. Salmon, J. E. & Pricop, L. Human receptors for immunoglobulin G: key elements in the pathogenesis of rheumatic disease. Arthritis Rheum. 44, 739–750 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Duits, A. J. et al. Skewed distribution of IgG Fc receptor IIa (CD32) polymorphism is associated with renal disease in systemic lupus erythematosus patients. Arthritis Rheum. 38, 1832–1836 (1995).

    Article  CAS  PubMed  Google Scholar 

  95. Salmon, J. E. et al. FcγRIIA alleles are heritable risk factors for lupus nephritis in African Americans. J. Clin. Invest. 97, 1348–1354 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Song, Y. W. et al. Abnormal distribution of Fcγ receptor type IIa polymorphisms in Korean patients with systemic lupus erythematosus. Arthritis Rheum. 41, 421–426 (1998).

    Article  CAS  PubMed  Google Scholar 

  97. Koene, H. R. et al. The FcγRIIIA–158F allele is a risk factor for systemic lupus erythematosus. Arthritis Rheum. 41, 1813–1818 (1998).

    Article  CAS  PubMed  Google Scholar 

  98. Wu, J. et al. A novel polymorphism of FcγRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J. Clin. Invest. 100, 1059–1070 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Salmon, J. E., Kimberly, R. P., Gibofsky, A. & Fotino, M. Defective mononuclear phagocyte function in systemic lupus erythematosus: dissociation of Fc-receptor ligand binding and internalization. J. Immunol. 133, 2525–2531 (1984).

    CAS  PubMed  Google Scholar 

  100. Hatta, Y. et al. Association of Fcγ receptor IIIB, but not of Fcγ receptor IIA and IIIA, polymorphisms with systemic lupus erythematosus in Japanese. Genes Immun. 1, 53–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Nieto, A. et al. Involvement of Fcγ receptor IIIA genotypes in susceptibility to rheumatoid arthritis. Arthritis Rheum. 43, 735–739 (2000).

    Article  CAS  PubMed  Google Scholar 

  102. Wainstein, E. et al. The neutrophil FcγRIIIB is associated with renal dysfunction in Wegener's granulomatosis (WG). Arthritis Rheum. 39, S210 (1996).

    Google Scholar 

  103. Vedeler, C. A., Raknes, G., Myhr, K. M. & Nyland, H. IgG Fc-receptor polymorphisms in Guillain-Barré syndrome. Neurology 55, 705–707 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Botto, M. et al. FγRIIa polymorphism in systemic lupus erythematosus (SLE): no association with disease. Clin. Exp. Immunol. 104, 264–268 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Oh, M. et al. Frequency of the FcγRIIIA–158F allele in African American patients with systemic lupus erythematosus. J. Rheumatol. 26, 1486–1489 (1999).

    CAS  PubMed  Google Scholar 

  106. Tax, W. J. M., Willems, H. W., Reekers, P. P. M., Capel, P. J. A. & Koene, R. A. P. Polymorphism in mitogenic effect of IgG1 monoclonal antibodies against T3 antigen on human T cells. Nature 304, 445–447 (1983).

    Article  CAS  PubMed  Google Scholar 

  107. Lalezari, P. In Immunohaematology (eds Engelfreet, C. P., Van Loghem, J. J., Kr, A. E. G.) 33 (Elsevier Science, Amsterdam, 1984).

    Google Scholar 

  108. Salmon, J. E., Edberg, J. C. & Kimberly, R. P. Fcγ receptor III on human neutrophils. Allelic variants have functionally distinct capacities. J. Clin. Invest. 85, 1287–1295 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yasuda, K., Sugita, N., Yamamoto, K., Kobayashi, T. & Yoshie, H. Seven single nucleotide substitutions in human Fcγ receptor IIB gene. Tissue Antigens 58, 339–342 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Gelfand, E. W. Antibody-directed therapy: past, present and future. J. Allergy Clin. Immunol. 108, S111–S116 (2001).

    Article  CAS  PubMed  Google Scholar 

  111. Samuelsson, A., Towers, T. & Ravetch, J. V. Anti-inflammaotry activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001).Describes the intriguing observation of FcγRIIb upregulation in macrophages after IVIG treatment in mice.

    Article  CAS  PubMed  Google Scholar 

  112. Yamazaki, T. et al. Essential immunoregulatory role for BCAP in B-cell development and function. J. Exp. Med. 195, 535–545 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wagle, N. M., Faassen, A. E., Kim, J. H. & Pierce, S. K. Regulation of B-cell-receptor-mediated MHC class II antigen processing by FcγRIIB1. J. Immunol. 162, 2732–2740 (1999).

    CAS  PubMed  Google Scholar 

  114. Rudge, E. R., Cutler, A. J., Pritchard, N. R. & Smith, K. G. C. Interleukin-4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and FcγRII-mediated B-cell suppression. J. Exp. Med. 195, 1079–1085 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dombrowicz, D. et al. Allergy-associated FcRβ is a molecular amplifier of IgE- and IgG-mediated in vivo responses. Immunity 8, 517–529 (1998).

    Article  CAS  PubMed  Google Scholar 

  116. Yu, P., Kosco-Vilbois, M., Richards, M., Kohler, G. & Lamers, M. C. Negative feedback regulation of IgE synthesis by murine CD23. Nature 369, 753–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  117. Israel, E. J., Wilsker, D. F., Hayes, K. C., Schoenfeld, D. & Simister, N. E. Increased clearance of IgG in mice that lack β2-microglobulin: possible protective role of FcRn. Immunology 89, 573–578 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Christianson, G. J. et al. β2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J. Immunol. 159, 4781–4792 (1997).

    CAS  PubMed  Google Scholar 

  119. Shimada, S. et al. Generation of polymeric immunoglobulin receptor-deficient mouse with marked reduction of secretory IgA. J. Immunol. 163, 5367–5373 (1999).

    CAS  PubMed  Google Scholar 

  120. de Haas, M., Kleijer, M., van Zwieten, R., Roos, D. & von dem Borne, A. E. Neutrophil FcγRIIIb deficiency, nature, and clinical consequences: a study of 21 individuals from 14 families. Blood 86, 2403–2413 (1995).

    CAS  PubMed  Google Scholar 

  121. van de Winkel, J. G., de Wit, T. P., Ernst, L. K., Capel, P. J. & Ceuppens, J. L. Molecular basis for a familial defect in phagocyte expression of IgG receptor I (CD64). J. Immunol. 154, 2896–2903 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I would like to thank T. Kurosaki for critical reading of the manuscript and helpful discussion, and N. Tsuchiya and C. Kyogoku for sharing of unpublished data. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology of Japan, and from the CREST Programme of Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASES

InterPro

immunoglobulin-like domain

ITAM

PH domain

PTB domain

SH2

LocusLink

AKT

BCAP

BTK

C-II

C-IV

CD16

CD19

CD64

DAP12

Fas

FcαR

Fcα/μR

FcɛRI

FcγRIA

FcγRIB

FcγRIC

FcγRIIA

FcγRIIB

FcγRIIb

FcγRIIC

FcγRIIIA

FcγRIIIB

FcRγ

FcRH1

FcRH2

FcRH3

FcRH4

FcRH5

FcRn

FGR

GRB2

HCK

LYN

MOG

p62DOK

PDK1

PI3K

PIR-A

PLCγ

poly-IgR

SHC

SHIP

SHP1

SHP2

SYK

OMIM

AIHA

GBS

GPS

MS

myasthenia gravis

rheumatoid arthritis

SLE

type-1 diabetes

Glossary

CENTRAL TOLERANCE

Refers to the lack of self-responsiveness that is established as lymphoid cells develop. It is associated with the deletion of autoreactive clones. For T cells, this occurs in the thymus.

PERIPHERAL TOLERANCE

Refers to the lack of self-responsiveness of mature lymphocytes to specific antigen. It is associated with the suppression of production of self-reactive antibodies by B cells and the inhibition of self-reactive effector cells, such as cytotoxic T cells and natural killer cells.

Fc RECEPTOR COMMON γ-CHAIN

(FcRγ). A membrane signal-adaptor protein that contains an ITAM. It is shared by FcγRI, FcγRIII, FcɛRI, FcαRI and other receptors, including collagen-receptor glycoprotein IV, NKp46, ILT1/LIR7 and PIR.

SYSTEMIC LUPUS ERYTHEMATOSUS

(SLE). A disease of unknown origin in which tissues and cells are damaged by the deposition of pathogenic antibodies and immune complexes. Generally, patients have abnormal B- and T-cell function.

ARTHUS REACTION

An erythematous and oedematous reaction discovered by Maurice Arthus when he injected hyperimmunized rabbits with the same soluble antigen intradermally. The Arthus reaction involves Fc-receptor-mediated inflammation and complement-mediated inflammation.

LEUKOCYTE-RECEPTOR COMPLEX

(LRC). The chromosomal region 19q13.4 contains the human leukocyte-receptor complex, which has been shown to contain more than 25 genes encoding leukocyte-expressed receptors of the immunoglobulin superfamily, such as killer immunoglobulin-like receptors (KIRs) and immunoglobulin-like transpcripts (ILTs)/leukocyte immunoglobulin-like receptors (LIRs).

PHAGOCYTOSIS

An endocytic process in which relatively large (≥1 μm) particles are incorporated into cells in an energy-dependent manner.

CROSS-PRESENTATION

This term refers to the ability of certain antigen-presenting cells to load peptides that are derived from exogenous antigens onto MHC class I molecules. This property is atypical, as most cells exclusively present peptides from their endogenous proteins on MHC class I molecules. Cross-presentation is essential for the initiation of immune responses against viruses that do not infect antigen-presenting cells.

HYPERSENSITIVITY REACTIONS

Hypersensitivity reactions are classified in terms of the antibody classes and effector cells that are responsible, and by the time-course of the reaction. Type I is an immediate reaction mediated by IgE and mast cells. Type II responses are directed against cell-surface or matrix antigens bound by IgG, whereas type III reactions are also IgG-mediated but directed against soluble antigens. Type IV hypersensitivity is a T-cell-mediated reaction.

AUTOIMMUNE HAEMOLYTIC ANAEMIA

Anaemia caused by autoantibodies to red-blood-cell surface antigens, which become targets for destruction by complement and by erythrophagocytosis.

NATURAL ANTIBODIES

Antibodies that can bind pathogens and self-antigens, such as ABO blood-group antigens, which are detected in the sera of normal individuals without any previous sensitization to the antigen.

IDIOPATHIC THROMBOCYTIC PURPURA

(ITP). An autoimmune type II hypersensitivity reaction that develops after the destruction of thrombocytes by the binding of autoantibodies to cell-surface antigens.

ANTI-DNA ANTIBODIES

Anti-DNA autoantibodies are found in autoimmune animal models and patients, and can be subdivided into those that are specific for double- or single-stranded DNA. They are used as a supportive marker for the diagnosis of several autoimmune diseases, such as SLE.

CRYOGLOBULINAEMIA

Refers to the presence of one or more immunoglobulins that precipitate at temperatures below 37°C.

MULTIPLE SCLEROSIS

(MS). A neurological disease that is characterized by focal demyelination in the central nervous system with lymphocytic infiltration.

EXPERIMENTAL AUTOIMMUNE ENCEPHALOMYELITIS

(EAE). An experimental model of multiple sclerosis (inflammation of the brain and spinal cord) that is induced in animals by immunization with myelin basic protein, myelin phospholipid protein or myelin oligodendrocyte glycoprotein, or their synthetic peptides.

GUILLAIN-BARRÉ SYNDROME

(GBS). A possible autoimmune disease that is characterized generally by acute muscle weakness and the absence of reflexes, possibly due to the production of autoantibodies that are specific for gangliosides on neuronal cells after Campylobacter jejuni enteritis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takai, T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2, 580–592 (2002). https://doi.org/10.1038/nri856

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri856

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing