Abstract
Layer formation in the developing cerebral cortex requires the movement of neurons from their site of origin to their final laminar position. We demonstrate, using time-lapse imaging of acute cortical slices, that two distinct forms of cell movement, locomotion and somal translocation, are responsible for the radial migration of cortical neurons. These modes are distinguished by their dynamic properties and morphological features. Locomotion and translocation are not cell-type specific; although at early ages some cells may move by translocation only, locomoting cells also translocate once their leading process reaches the marginal zone. The existence of two modes of radial migration may account for the differential effects of certain genetic mutations on cortical development.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
206,07 € per year
only 17,17 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Caviness, V. S. Jr. Neocortical histogenesis in normal and reeler mice: a developmental study based upon [3H] thymidine autoradiography. Brain Res. Dev. Brain Res. 4, 293–302 (1982).
Marin-Padilla, M. Early prenatal ontogenesis of the cerebral cortex (neocortex) of the cat (Felis domestica). A Golgi study. I. The primordial neocortical organization. Z. Anat. Entwicklungsgesch. 134, 117–145 (1971).
Sheppard, A. M. & Pearlman, A. L. Abnormal reorganization of preplate neurons and their associated extracellular matrix: an early manifestation of altered neocortical development in the reeler mutant mouse. J. Comp. Neurol. 378, 173–179 (1997).
Luskin, M. B. & Shatz, C. J. Neurogenesis of the cat's primary visual cortex. J. Comp. Neurol. 242, 611–631 (1985).
Rakic, P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J. Comp. Neurol. 145, 61–84 (1972).
O'Rourke, N. A., Dailey, M. E., Smith, S. J. & McConnell, S. K. Diverse migratory pathways in the developing cerebral cortex. Science 258, 299–302 (1992).
Pearlman, A. L., Faust, P. L., Hatten, M. E. & Brunstrom, J. E. New directions for neuronal migration. Curr. Opin. Neurobiol. 8, 45–54 (1998).
Gilmore, E. C., Ohshima, T., Goffinet, A. M., Kulkarni, A. B. & Herrup, K. Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex. J. Neurosci. 18, 6370–6377 (1998).
Chae, T. et al. Mice lacking p35, a neuronal specific activator of cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18, 29–42 (1997).
Walsh, C. & Goffinet, A. Potential mechanisms of mutations that affect neuronal migration in man and mouse. Curr. Opin. Genet. Dev. 10, 270–274 (2000).
Gleeson, J. G. & Walsh, C. A. Neuronal migration disorders: from genetic diseases to developmental mechanisms. Trends Neurosci. 23, 352–359 (2000).
Book, K. J. & Morest, D. K. Migration of neuroblasts by perikaryal translocation: role of cellular elongation and axonal outgrowth in the acoustic nuclei of the chick embryo medulla. J. Comp. Neurol. 297, 55–76 (1990).
Morris, N. R., Efimov, V. P. & Xiang, X. Nuclear migration, nucleokinesis and lissencephaly. Trends Cell Biol. 8, 467–70 (1998).
Book, K. J., Howard, R. & Morest, D. K. Direct observation in vitro of how neuroblasts migrate: medulla and cochleovestibular ganglion of the chick embryo. Exp. Neurol. 111, 228–43 (1991).
Hendriks, R., Morest, D. K. & Kaczmarek, L. K. Role in neuronal cell migration for high-threshold potassium currents in the chicken hindbrain. J. Neurosci. Res. 58, 805–814 (1999).
Hager, G., Dodt, H.-U., Sieglgansberger, W. & Liesi, P. Novel forms of neuronal migration in the rat cerebellum. J. Neurosci. Res. 40, 207–219 (1995).
Yee, K. T., Simon, H. H., Tessier-Lavigne, M. & O'Leary, D. M. Extension of long leading processes and neuronal migration in the mammalian brain directed by the chemoattractant netrin-1. Neuron 24, 607–622 (1999).
Gray, G. E. & Sanes, J. R. Migratory paths and phenotypic choices of clonally related cells in the avian optic tectum. Neuron 6, 211–225 (1991).
Snow, R. L. & Robson, J. A. Migration and differentiation of neurons in the retina and optic tectum of the chick. Exp. Neurol. 134, 13–24 (1995).
Morest, D. K. A study of neurogenesis in the forebrain of opossum pouch young. Z. Anat. Entwicklungsgesch. 130, 265–305 (1970).
Brittis, P. A., Meiri, K., Dent, E. & Silver, J. The earliest pattern of neuronal differentiation and migration in the mammalian central nervous system. Exp. Neurol. 133, 1–12 (1995).
Edmondson, J. C. & Hatten, M. E. Glial-guided granule neuron migration in vitro: a high-resolution time-lapse video microscopic study. J. Neurosci. 7, 1928–1934 (1987).
Komuro, H. & Rakic, P. Dynamics of granule cell migration: a confocal microscope study in acute cerebellar slice preparations. J. Neurosci. 15, 1110–1120 (1995).
Takahashi, T., Nowakowski, R. S. & Caviness, V. S. Interkinetic and migratory behavior of a cohort of neocortical neurons arising in the early embryonic murine cerebral wall. J. Neurosci. 15, 5762–5776 (1996).
Gan, W.-B., Grutzendler, J., Wong, W. T., Wong, R. O. L. & Lichtman, J. Multicolor “DiOlistic” labeling of the nervous system using lipohilic dye combinations. Neuron 27, 219–225 (2000).
Meyer, G., Soria, J. M., Martinez-Galan, J. R., Martin-Clemente, B. & Fairen, A. Different origins and developmental histories of transient neurons in the marginal zone of the fetal and neonatal rat cortex. J. Comp. Neurol. 397, 493–518 (1998).
Fonseca, M., Del Rio, J. A., Martinez, A., Gomez, S. & Soriano, E. Development of calretinin immunoreactivity in the neocortex of the rat. J. Comp. Neurol. 361, 177–192 (1995).
Reinsch, S. & Gonczy, P. Mechanisms of nuclear positioning. J. Cell Sci. 111, 2283–2295 (1998).
Rakic, P., Knyihar-Csillik, E. & Csillik, B. Polarity of microtubule assemblies during neuronal migration. Proc. Natl. Acad. Sci. USA 93, 9218–9222 (1996).
Rivas, R. J. & Hatten, M. E. Motility and cytoskeleton organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).
Sauer, F. C. Mitosis in the neural tube. J. Comp. Neurol. 62, 377–405 (1935).
Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).
Horwitz, A. R. & Parsons, J. T. Cell migration—movin' on. Science 286, 1102–1103 (1999).
Cameron, R. S., Ruffin, J. W., Cho, N. K., Cameron, P. L. & Rakic, P. Developmental expression, pattern of distribution, and effect on cell aggregation implicate a neuron-glial junctional domain protein in neuronal migration. J. Comp. Neurol. 387, 467–488 (1997).
Anton, E. S., Cameron, R. S. & Rakic, P. Role of neuron-glial junctional domain proteins in the maintenance and termination of neuronal migration across the embryonic cerebral wall. J. Neurosci. 16, 2283–2293 (1996).
Anton, E. S., Kreidberg, J. A. & Rakic, P. Distinct functions of alpha-3 and alpha-v integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22, 277–289 (1999).
Kakita, A. & Goldman, J. E. Patterns and dynamics of SVZ cell migration in the postnatal forebrain: monitoring living progenitors in slice preparations. Neuron 23, 461–472 (1999).
Marin-Padilla, M. Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol. 152, 109–126 (1978).
Goffinet, A. M. The embryonic development of the cortical plate in reptiles: a comparative study in emys orbicularis and lacerta agilis. J. Comp. Neurol. 246, 437–452 (1983).
D'Arcangelo, G. et al. A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374, 719–723 (1995).
Walsh, C. A. Genetic malformations of the human cerebral cortex. Neuron 23, 19–29 (1999).
Dulabon, L. et al. Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27, 33–44 (2000).
Pinto-Lord, M. C., Evrard, P. & Caviness, V. S. Jr. Obstructed neuronal migration along radial glial fibers in the neocortex of the reeler mouse: a Golgi-EM analysis. Brain. Res. Dev. Brain Res. 4, 379–393 (1982).
Nikolic, M., Chou, M. M., Lu, W. G., Mayer, B. J. & Tsai, L. H. The P35/Cdk5 kinase is a neuron-specific rac effector that inhibits Pak1 activity. Nature 395, 194–198 (1998).
Wada, Y. et al. Microtubule-stimulated phosphorylation of tau at Ser202 and Thr205 by cdk5 decreases its microtubule nucleation activity. J. Biochem. (Tokyo) 124, 738–746 (1998).
Kwon, Y. T., Gupta, A., Zhou, Y., Nikolic, M. & Tsai, L. H. Regulation of N-cadherin-mediated adhesion by the p35-cdk5 kinase. Curr. Biol. 10, 363–372 (2000).
Hatten, M. E. Riding the glial monorail: a common mechanism for glial-guided neuronal migration in different regions of the developing mammalian brain. TINS 13, 179–184 (1990).
Rakic, P., Cameron, R. S. & Komuro, H. Recognition, adhesion, transmembrane signaling and cell motility in guided neuronal migration. Curr. Opin. Neurobiol. 4, 63–69 (1994).
Sheppard, A. M. et al. Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains. Dev. Biol. 172, 504–518 (1995).
Brunstrom, J. E., Gray-Swain, M. R., Osborne, P. A. & Pearlman, A. L. Neuronal heterotopias in the developing cerebral cortex produced by neurotrophin-4. Neuron 18, 505–517 (1997).
Acknowledgements
This work was supported by grants from the National Eye Institute (A.L.P and R.O.L.W.), the National Institute of Neurological Diseases and Stroke (J.E.B and A.L.P.) the McDonnell Center for Cellular and Molecular Neurobiology of Washington University (J.E.B and A.L.P.), the National Institute of Aging (J.G.) and fellowship support from the Wellcome Trust (B.N.). We thank F. Branch, D. Bryant, B. Kay and D. Oakley for technical assistance.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nadarajah, B., Brunstrom, J., Grutzendler, J. et al. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci 4, 143–150 (2001). https://doi.org/10.1038/83967
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/83967