Abstract
Dietary restriction is a robust means of extending adult lifespan and postponing age-related disease in many species, including yeast, nematode worms, flies and rodents1,2. Studies of the genetic requirements for lifespan extension by dietary restriction in the nematode Caenorhabditis elegans have implicated a number of key molecules in this process3,4,5, including the nutrient-sensing target of rapamycin (TOR) pathway6 and the Foxa transcription factor PHA-4 (ref. 7). However, little is known about the metabolic signals that coordinate the organismal response to dietary restriction and maintain homeostasis when nutrients are limited. The endocannabinoid system is an excellent candidate for such a role given its involvement in regulating nutrient intake and energy balance8. Despite this, a direct role for endocannabinoid signalling in dietary restriction or lifespan determination has yet to be demonstrated, in part due to the apparent absence of endocannabinoid signalling pathways in model organisms that are amenable to lifespan analysis9. N-acylethanolamines (NAEs) are lipid-derived signalling molecules, which include the mammalian endocannabinoid arachidonoyl ethanolamide. Here we identify NAEs in C. elegans, show that NAE abundance is reduced under dietary restriction and that NAE deficiency is sufficient to extend lifespan through a dietary restriction mechanism requiring PHA-4. Conversely, dietary supplementation with the nematode NAE eicosapentaenoyl ethanolamide not only inhibits dietary-restriction-induced lifespan extension in wild-type worms, but also suppresses lifespan extension in a TOR pathway mutant. This demonstrates a role for NAE signalling in ageing and indicates that NAEs represent a signal that coordinates nutrient status with metabolic changes that ultimately determine lifespan.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
196,21 € per year
only 3,85 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Mair, W. & Dillin, A. Aging and survival: the genetics of life span extension by dietary restriction. Annu. Rev. Biochem. 77, 727–754 (2008)
Bishop, N. A. & Guarente, L. Genetic links between diet and lifespan: shared mechanisms from yeast to humans. Nature Rev. Genet. 8, 835–844 (2007)
Honjoh, S., Yamamoto, T., Uno, M. & Nishida, E. Signalling through RHEB-1 mediates intermittent fasting-induced longevity in C. elegans . Nature 457, 726–730 (2009)
Bishop, N. A. & Guarente, L. Two neurons mediate diet-restriction-induced longevity in C. elegans . Nature 447, 545–549 (2007)
Carrano, A. C., Liu, Z., Dillin, A. & Hunter, T. A conserved ubiquitination pathway determines longevity in response to diet restriction. Nature 460, 396–399 (2009)
Kapahi, P. et al. With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab. 11, 453–465 (2010)
Panowski, S. H., Wolff, S., Aguilaniu, H., Durieux, J. & Dillin, A. PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans . Nature 447, 550–555 (2007)
Di Marzo, V. & Matias, I. Endocannabinoid control of food intake and energy balance. Nature Neurosci. 8, 585–589 (2005)
McPartland, J. M. & Glass, M. Functional mapping of cannabinoid receptor homologs in mammals, other vertebrates, and invertebrates. Gene 312, 297–303 (2003)
Hardison, S., Weintraub, S. T. & Giuffrida, A. Quantification of endocannabinoids in rat biological samples by GC/MS: technical and theoretical considerations. Prostaglandins Other Lipid Mediat. 81, 106–112 (2006)
Lehtonen, M., Reisner, K., Auriola, S., Wong, G. & Callaway, J. C. Mass-spectrometric identification of anandamide and 2-arachidonoylglycerol in nematodes. Chem. Biodivers. 5, 2431–2441 (2008)
Di Marzo, V., Bifulco, M. & De Petrocellis, L. The endocannabinoid system and its therapeutic exploitation. Nature Rev. Drug Discov. 3, 771–784 (2004)
McPartland, J. M., Matias, I., Di Marzo, V. & Glass, M. Evolutionary origins of the endocannabinoid system. Gene 370, 64–74 (2006)
Leung, D., Saghatelian, A., Simon, G. M. & Cravatt, B. F. Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45, 4720–4726 (2006)
Fielenbach, N. & Antebi, A. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22, 2149–2165 (2008)
Kirkham, T. C., Williams, C. M., Fezza, F. & Di Marzo, V. Endocannabinoid levels in rat limbic forebrain and hypothalamus in relation to fasting, feeding and satiation: stimulation of eating by 2-arachidonoyl glycerol. Br. J. Pharmacol. 136, 550–557 (2002)
Izzo, A. A. et al. Basal and fasting/refeeding-regulated tissue levels of endogenous PPAR-α ligands in Zucker rats. Obesity 18, 55–62 (2010)
Chen, D., Thomas, E. L. & Kapahi, P. HIF-1 modulates dietary restriction-mediated lifespan extension via IRE-1 in Caenorhabditis elegans . PLoS Genet. 5, e1000486 (2009)
Kaeberlein, T. L. et al. Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5, 487–494 (2006)
Banni, S. & Di Marzo, V. Effect of dietary fat on endocannabinoids and related mediators: consequences on energy homeostasis, inflammation and mood. Mol. Nutr. Food Res. 54, 82–92 (2010)
Watts, J. L. & Browse, J. Genetic dissection of polyunsaturated fatty acid synthesis in Caenorhabditis elegans . Proc. Natl Acad. Sci. USA 99, 5854–5859 (2002)
Valenti, M. et al. The endocannabinoid system in the brain of Carassius auratus and its possible role in the control of food intake. J. Neurochem. 95, 662–672 (2005)
Soderstrom, K., Tian, Q., Valenti, M. & Di Marzo, V. Endocannabinoids link feeding state and auditory perception-related gene expression. J. Neurosci. 24, 10013–10021 (2004)
Breunig, E. et al. The endocannabinoid 2-arachidonoyl-glycerol controls odor sensitivity in larvae of Xenopus laevis . J. Neurosci. 30, 8965–8973 (2010)
De Petrocellis, L., Melck, D., Bisogno, T., Milone, A. & Di Marzo, V. Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 92, 377–387 (1999)
Elphick, M. R. & Egertova, M. The phylogenetic distribution and evolutionary origins of endocannabinoid signalling. Handb. Exp. Pharmacol. 168, 283–297 (2005)
Elphick, M. R. BfCBR: a cannabinoid receptor ortholog in the cephalochordate Branchiostoma floridae (Amphioxus). Gene 399, 65–71 (2007)
Sulston, J., Hodgkin, J. & Wood, W. B. in The Nematode Caenorhabditis elegans 587–606 (Cold Spring Harbor Laboratory, 1988)
Held, J. M. et al. DAF-12-dependent rescue of dauer formation in Caenorhabditis elegans by (25S)-cholestenoic acid. Aging Cell 5, 283–291 (2006)
Lithgow, G. J., White, T. M., Melov, S. & Johnson, T. E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl Acad. Sci. USA 92, 7540–7544 (1995)
Fabian, T. J. & Johnson, T. E. Production of age-synchronous mass cultures of Caenorhabditis elegans . J. Gerontol. 49, B145–B156 (1994)
Hobert, O. PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans . Biotechniques 32, 728–730 (2002)
Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K. & Pease, L. R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989)
Dupuy, D. et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans . Nature Biotechnol. 25, 663–668 (2007)
Knight, C. G., Patel, M. N., Azevedo, R. B. & Leroi, A. M. A novel mode of ecdysozoan growth in Caenorhabditis elegans . Evol. Dev. 4, 16–27 (2002)
Mair, W., Panowski, S. H., Shaw, R. J. & Dillin, A. Optimizing dietary restriction for genetic epistasis analysis and gene discovery in C. elegans . PLoS ONE 4, e4535 (2009)
Sultana, T. & Johnson, M. E. Sample preparation and gas chromatography of primary fatty acid amides. J. Chromatogr. A 1101, 278–285 (2006)
Kamath, R. S. et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421, 231–237 (2003)
Timmons, L., Tabara, H., Mello, C. C. & Fire, A. Z. Inducible systemic RNA silencing in Caenorhabditis elegans . Mol. Biol. Cell 14, 2972–2983 (2003)
Acknowledgements
Some nematode strains used in this work were provided by the Caenorhabditis Genetics Center, which is funded by the NIH National Center for Research Resources (NCRR). We would like to thank N. J. Harrison, A. Olsen and P. Kapahi. M.L. was supported by NIH training grant T32 AG000266 and NIH grant R01 AG029631. GC-MS analysis was made possible through the Mass Spectrometry and Imaging Technologies Core supported by NIH grant PL1-AG032118. This work was supported by a Larry L. Hillblom Foundation grant and NIH grants to G.J.L. (UL1 DE019608, supporting the Interdisciplinary Research Consortium on Geroscience and R01 AG029631) and by NIH grants R21 AG030192 and R01 AG036992 to M.S.G.
Author information
Authors and Affiliations
Contributions
M.L., J.M.H., B.W.G., G.J.L. and M.S.G. conceived of and planned experiments. M.L., M.C.V., I.M.K., J.B.G. and M.S.G. performed experiments. M.L. and M.S.G. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
This file contains Supplementary Tables 1-6 and Supplementary Figures 1- 17 with legends. (PDF 5148 kb)
Rights and permissions
About this article
Cite this article
Lucanic, M., Held, J., Vantipalli, M. et al. N-acylethanolamine signalling mediates the effect of diet on lifespan in Caenorhabditis elegans. Nature 473, 226–229 (2011). https://doi.org/10.1038/nature10007
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature10007