Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Erosion of the telomeric single-strand overhang at replicative senescence

Abstract

Cultured primary human cells inevitably enter a state of replicative senescence for which the specific molecular trigger is unknown. We show that the single-strand telomeric overhang, a key component of telomere structure, is eroded at senescence. Expression of telomerase prevents overhang loss, suggesting that this enzyme prevents senescence by maintaining proper telomere structure. In contrast, progressive overhang loss occurs in cells that avoid senescence through the inactivation of p53 and Rb, indicating that overhang erosion is the result of continuous cell division and not a consequence of senescence. We thus provide evidence for a specific molecular alteration in telomere structure at senescence and suggest that this change, rather than overall telomere length, serves to trigger this state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Measurement of the telomeric overhang using T-OLA.
Figure 2: Loss of the telomeric overhang at replicative senescence.
Figure 3: Loss of the telomeric overhang in cells expressing large T-antigen.
Figure 4: Effect of growth arrest and physiologic stress on telomeric overhang length.

Similar content being viewed by others

References

  1. Rubin, H. The disparity between human cell senescence in vitro and lifelong replication in vivo. Nat. Biotechnol. 20, 675–681 (2002).

    Article  CAS  Google Scholar 

  2. Hayflick, L. The biology of human aging. Am. J. Med. Sci. 265, 432–445 (1973).

    Article  CAS  Google Scholar 

  3. Harley, C.B. et al. Telomerase, cell immortality, and cancer. Cold Spring Harb. Symp. Quant. Biol. 59, 307–315 (1994).

    Article  CAS  Google Scholar 

  4. Wright, W.E. & Shay, J.W. Historical claims and current interpretations of replicative aging. Nat. Biotechnol. 20, 682–688 (2002).

    Article  CAS  Google Scholar 

  5. Harley, C.B., Futcher, A.B. & Greider, C.W. Telomeres shorten during ageing of human fibroblasts. Nature 345, 458–460 (1990).

    Article  CAS  Google Scholar 

  6. Bodnar, A.G. et al. Extension of life-span by introduction of telomerase into normal human cells. Science 279, 349–352 (1998).

    Article  CAS  Google Scholar 

  7. Vaziri, H. & Benchimol, S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Biol. 8, 279–282 (1998).

    Article  CAS  Google Scholar 

  8. Allsopp, R.C. & Harley, C.B. Evidence for a critical telomere length in senescent human fibroblasts. Exp. Cell Res. 219, 130–136 (1995).

    Article  CAS  Google Scholar 

  9. Zhu, J., Wang, H., Bishop, J.M. & Blackburn, E.H. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl. Acad. Sci. USA 96, 3723–3728 (1999).

    Article  CAS  Google Scholar 

  10. Ouellette, M.M. et al. Subsenescent telomere lengths in fibroblasts immortalized by limiting amounts of telomerase. J. Biol. Chem. 275, 10072–10076 (2000).

    Article  CAS  Google Scholar 

  11. Blackburn, E.H. Telomere states and cell fates. Nature 408, 53–56 (2000).

    Article  CAS  Google Scholar 

  12. Karlseder, J., Smogorzewska, A. & de Lange, T. Senescence induced by altered telomere state, not telomere loss. Science 295, 2446–2449 (2002).

    Article  CAS  Google Scholar 

  13. Wright, W.E., Tesmer, V.M., Huffman, K.E., Levene, S.D. & Shay, J.W. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11, 2801–2809 (1997).

    Article  CAS  Google Scholar 

  14. Makarov, V.L., Hirose, Y. & Langmore, J.P. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88, 657–666 (1997).

    Article  CAS  Google Scholar 

  15. McElligott, R. & Wellinger, R.J. The terminal DNA structure of mammalian chromosomes. EMBO J. 16, 3705–3714 (1997).

    Article  CAS  Google Scholar 

  16. Huffman, K.E., Levene, S.D., Tesmer, V.M., Shay, J.W. & Wright, W.E. Telomere shortening is proportional to the size of the G-rich telomeric 3′-overhang. J. Biol. Chem. 275, 19719–19722 (2000).

    Article  CAS  Google Scholar 

  17. Blackburn, E.H. Switching and signaling at the telomere. Cell 106, 661–673 (2001).

    Article  CAS  Google Scholar 

  18. Griffith, J.D. et al. Mammalian telomeres end in a large duplex loop. Cell 97, 503–514 (1999).

    Article  CAS  Google Scholar 

  19. Henderson, E.R. & Blackburn, E.H. An overhanging 3′ terminus is a conserved feature of telomeres. Mol. Cell. Biol. 9, 345–348 (1989).

    Article  CAS  Google Scholar 

  20. Cimino-Reale, G. et al. The length of telomeric G-rich strand 3′-overhang measured by oligonucleotide ligation assay. Nucleic Acids Res. 29, E35 (2001).

    Article  CAS  Google Scholar 

  21. Stansel, R.M., de Lange, T. & Griffith, J.D. T-loop assembly in vitro involves binding of TRF2 near the 3′ telomeric overhang. EMBO J. 20, 5532–5540 (2001).

    Article  CAS  Google Scholar 

  22. Allsopp, R.C. et al. Telomere shortening is associated with cell division in vitro and in vivo. Exp. Cell Res. 220, 194–200 (1995).

    Article  CAS  Google Scholar 

  23. Lingner, J., Cooper, J.P. & Cech, T.R. Telomerase and DNA end replication: no longer a lagging strand problem? Science 269, 1533–1534 (1995).

    Article  CAS  Google Scholar 

  24. Shay, J.W., Pereira-Smith, O.M. & Wright, W.E. A role for both RB and p53 in the regulation of human cellular senescence. Exp. Cell Res. 196, 33–39 (1991).

    Article  CAS  Google Scholar 

  25. Petersen, S., Saretzki, G. & von Zglinicki, T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res. 239, 152–160 (1998).

    Article  CAS  Google Scholar 

  26. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  Google Scholar 

  27. Dimri, G.P. et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367 (1995).

    Article  CAS  Google Scholar 

  28. Liang, K. & Zeger, S. Longitudinal data analysis using generalized linear models. Biometrika 73, 13–22 (1986).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank E. D'Ambrosio for helpful advice regarding T-OLA and for sharing unpublished results, F. Barany for repeated helpful advice, T. de Lange and J. Griffith for plasmids and K. Yates, Y. Dor, J. Yang, R. Watnick, P. Gupta, H. Vaziri, S. Dessain and other members of R.A.W.'s laboratory for helpful comments, discussion and critical review of the manuscript. This work was supported by Merck/MIT (R.A.W.), the US National Cancer Institute (R.A.W.), an American Association for Cancer Research Postdoctoral Fellowship (S.A.S.), an EMBO Long-Term Fellowship (I.B.), the Dana Farber Cancer Institute (V.J.C.), the US National Cancer Institute Howard Temin award (W.C.H.), a Doris Duke Charitable Foundation Clinical Scientist Development Award (W.C.H.) and a Kimmel Scholar Award (W.C.H.). R.A.W. is an American Cancer Society Research Professor and a Daniel K. Ludwig Cancer Research Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Weinberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stewart, S., Ben-Porath, I., Carey, V. et al. Erosion of the telomeric single-strand overhang at replicative senescence. Nat Genet 33, 492–496 (2003). https://doi.org/10.1038/ng1127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing