Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Viewpoint
  • Published:

Unravelling mononuclear phagocyte heterogeneity

Abstract

When Ralph Steinman and Zanvil Cohn first described dendritic cells (DCs) in 1973 it took many years to convince the immunology community that these cells were truly distinct from macrophages. Almost four decades later, the DC is regarded as the key initiator of adaptive immune responses; however, distinguishing DCs from macrophages still leads to confusion and debate in the field. Here, Nature Reviews Immunology asks five experts to discuss the issue of heterogeneity in the mononuclear phagocyte system and to give their opinion on the importance of defining these cells for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ajami, B., Bennett, J. L., Krieger, C., Tetzlaff, W. & Rossi, F. M. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nature Neurosci. 10, 1538–1543 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Merad, M. & Manz, M. G. Dendritic cell homeostasis. Blood 113, 3418–3427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chorro, L. et al. LC proliferation mediates neonatal development, homeostasis, and inflammation-associated expansion of the epidermal LC network. J. Exp. Med. 206, 3089–3100 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gordon, S. in Fundamental Immunology (ed Paul, W.) (Lippincott Williams and Wilkins, Philadelphia, 2008).

    Google Scholar 

  6. Pluddemann, A. & Gordon, S. in Phagocyte–pathogen interactions (eds Russell, D. G. & Gordon, S.) (American Society for Microbiology Press, Washington DC, 2009).

    Google Scholar 

  7. Gordon, S. & Taylor, P. R. Monocyte and macrophage heterogeneity. Nature Rev. Immunol. 5, 953–964 (2005).

    Article  CAS  Google Scholar 

  8. Mebius, R. E. & Kraal, G. Structure and function of the spleen. Nature Rev. Immunol. 5, 606–616 (2005).

    Article  CAS  Google Scholar 

  9. Swirski, F. K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Steinman, R. M. Dendritic cells: versatile controllers of the immune system. Nature Med. 13, 1–5 (2007).

    Article  Google Scholar 

  11. Naik, S. H. et al. Intrasplenic steady-state dendritic cell precursors that are distinct from monocytes. Nature Immunol. 7, 663–671 (2006).

    CAS  Google Scholar 

  12. Fogg, D. K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Liu, K. et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nature Immunol. 8, 578–583 (2007).

    Article  CAS  Google Scholar 

  14. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nature Immunol. 8, 1207–1216 (2007).

    Article  CAS  Google Scholar 

  16. Jakubzick, C. et al. Lymph-migrating, tissue-derived dendritic cells are minor constituents within steady-state lymph nodes. J. Exp. Med. 205, 2839–2850 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hume, D. A. The mononuclear phagocyte system. Curr. Opin. Immunol. 18, 49–53 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Hume, D. A. Differentiation and heterogeneity in the mononuclear phagocyte system. Mucosal Immunol. 1, 432–441 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Hume, D. A. Probability in transcriptional regulation and its implications for leukocyte differentiation and inducible gene expression. Blood 96, 2323–2328 (2000).

    CAS  PubMed  Google Scholar 

  21. Hume, D. A. Macrophages as APC and the dendritic cell myth. J. Immunol. 181, 5829–5835 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Randolph, G. J., Inaba, K., Robbiani, D. F., Steinman, R. M. & Muller, W. A. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity 11, 753–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Serbina, N. V., Salazar-Mather, T. P., Biron, C. A., Kuziel, W. A. & Pamer, E. G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Steinman, R. M. & Inaba, K. Stimulation of the primary mixed leukocyte reaction. Crit. Rev. Immunol. 5, 331–348 (1985).

    CAS  PubMed  Google Scholar 

  25. Pavli, P., Woodhams, C. E., Doe, W. F. & Hume, D. A. Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria. Immunology 70, 40–47 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Denning, T. L., Wang, Y. C., Patel, S. R., Williams, I. R. & Pulendran, B. Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nature Immunol. 8, 1086–1094 (2007).

    Article  CAS  Google Scholar 

  28. Pavli, P., Hume, D. A., Van De Pol, E. & Doe, W. F. Dendritic cells, the major antigen-presenting cells of the human colonic lamina propria. Immunology 78, 132–141 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Coombes, J. L. & Powrie, F. Dendritic cells in intestinal immune regulation. Nature Rev. Immunol. 8, 435–446 (2008).

    Article  CAS  Google Scholar 

  30. Platt, A. M. & Mowat, A. M. Mucosal macrophages and the regulation of immune responses in the intestine. Immunol. Lett. 119, 22–31 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Laffont, S. & Powrie, F. Immunology: dendritic-cell genealogy. Nature 462, 732–733 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nature Immunol. 9, 769–776 (2008).

    Article  CAS  Google Scholar 

  33. Mizoguchi, A. et al. Dependence of intestinal granuloma formation on unique myeloid DC-like cells. J. Clin. Invest. 117, 605–615 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cerutti, A. & Rescigno, M. The biology of intestinal immunoglobulin A responses. Immunity 28, 740–750 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schulz, O. et al. Intestinal CD103+, but not CX3CR1+, antigen sampling cells migrate in lymph and serve classical dendritic cell functions. J. Exp. Med. 206, 3101–3114 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Niess, J. H. et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307, 254–258 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Rescigno, M., Lopatin, U. & Chieppa, M. Interactions among dendritic cells, macrophages, and epithelial cells in the gut: implications for immune tolerance. Curr. Opin. Immunol. 20, 669–675 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Gonzalez-Juarrero, M., Shim, T. S., Kipnis, A., Junqueira-Kipnis, A. P. & Orme, I. M. Dynamics of macrophage cell populations during murine pulmonary tuberculosis. J. Immunol. 171, 3128–3135 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Jakubzick, C. et al. Blood monocyte subsets differentially give rise to CD103+ and CD103 pulmonary dendritic cell populations. J. Immunol. 180, 3019–3027 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Idoyaga, J., Suda, N., Suda, K., Park, C. G. & Steinman, R. M. Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen. Proc. Natl Acad. Sci. USA 106, 1524–1529 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chieppa, M., Rescigno, M., Huang, A. Y. & Germain, R. N. Dynamic imaging of dendritic cell extension into the small bowel lumen in response to epithelial cell TLR engagement. J. Exp. Med. 203, 2841–2852 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varol, C. et al. Intestinal lamina propria dendritic cell subsets have different origin and functions. Immunity 31, 502–512 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Niess, J. H. & Adler, G. Enteric flora expands gut lamina propria CX3CR1+ dendritic cells supporting inflammatory immune responses under normal and inflammatory conditions. J. Immunol. 184, 2026–2037 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Keshav, S., Chung, P., Milon, G. & Gordon, S. Lysozyme is an inducible marker of macrophage activation in murine tissues as demonstrated by in situ hybridization J. Exp. Med. 174, 1049–1058 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Berlin, I. The hedgehog and the fox: an essay on Tolstoy's view of history (Weidenfeld and Nicolson, London, 1953).

    Google Scholar 

  47. Steinman, R. M., Hawiger, D. & Nussenzweig, M. C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  PubMed  Google Scholar 

  48. Iliev, I. D., Mileti, E., Matteoli, G., Chieppa, M. & Rescigno, M. Intestinal epithelial cells promote colitis-protective regulatory T-cell differentiation through dendritic cell conditioning. Mucosal Immunol. 2, 340–350 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Mellman, I. & Steinman, R. M. Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Inaba, K. et al. Granulocytes, macrophages, and dendritic cells arise from a common major histocompatibility complex class II-negative progenitor in mouse bone marrow. Proc. Natl Acad. Sci. USA 90, 3038–3042 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Auffray, C., Sieweke, M. H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Fleetwood, A. J., Lawrence, T., Hamilton, J. A. & Cook, A. D. Granulocyte-macrophage colony-stimulating factor (CSF) and macrophage CSF-dependent macrophage phenotypes display differences in cytokine profiles and transcription factor activities: implications for CSF blockade in inflammation. J. Immunol. 178, 5245–5252 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. MacDonald, K. P. et al. The colony-stimulating factor 1 receptor is expressed on dendritic cells during differentiation and regulates their expansion. J. Immunol. 175, 1399–1405 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Hume, D. A. Immunohistochemical analysis of murine mononuclear phagocytes that express class II major histocompatibility antigens. Immunobiology 170, 381–389 (1985).

    Article  CAS  PubMed  Google Scholar 

  56. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Nahrendorf, M. et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J. Exp. Med. 204, 3037–3047 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Movahedi, K., et al. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood 111, 4233–4244 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Henri, S. et al. CD207+ CD103+ dermal dendritic cells cross-present keratinocyte-derived antigens irrespective of the presence of Langerhans cells. J. Exp. Med. 207, 189–206 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bonifaz . et al. In vivo targeting of antigen to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Longhi, M. P. et al. Dendritic cells require a systemic type I interferon response to mature and induce CD4+Th1 immunity with poly IC as adjuvant. J. Exp. Med. 206, 1589–1602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Patsouris, D. et al. Ablation of CD11c-positive cells normalizes insulin sensitivity in obese insulin resistant animals. Cell Metab. 8, 301–309 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Haniffa, M. et al. Differential rates of replacement of human dermal dendritic cells and macrophages during hematopoietic stem cell transplantation. J. Exp. Med. 206, 371–385 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Naik, S. H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nature Immunol. 8, 1217–1226 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Glossary

CD11c–DTR (diphtheria toxin receptor) mice

Mice genetically engineered to express the diphtheria toxin receptor under the control of the CD11c promoter. Following administration of diphtheria toxin, cells expressing CD11c are transiently depleted in these animals. These mice have typically been used to study DC function, but certain CD11c+ macrophage populations are also depleted by diphtheria toxin treatment.

Cross-presentation

The mechanism by which certain APCs take up, process and present extracellular antigens on MHC class I molecules to stimulate CD8+ T cells. This property is atypical, as most cells exclusively present peptides derived from endogenous proteins on MHC class I molecules.

Kupffer cell

A specialized macrophage that lines the sinusoidal vessels of the liver. These cells regulate local immune responses, and remove microbial particles, endotoxin and other noxious substances that penetrate the portal venous system.

Langerhans cell

A type of DC that is resident in the epidermal layer of the skin.

M1 macrophages

A macrophage subtype that produces pro-inflammatory cytokines and has cytotoxic functions.

M2 macrophages

A macrophage subtype that acts to dampen inflammatory responses and scavenge debris, as well as to promote angiogenesis and tissue remodelling and repair.

Marginal zone metallophilic macrophage

A type of macrophage that surrounds the splenic white pulp, adjacent to the marginal sinus, and is involved in trapping particulate antigens.

Microglial cell

A phagocytic cell of myeloid origin that is involved in the innate immune response in the central nervous system. Microglial cells are thought to be the brain-resident macrophages.

Mixed leukocyte reaction

(MLR). A tissue-culture technique for testing T cell reactivity and APC activity. A population of T cells is cultured with MHC-mismatched APCs, and proliferation of the T cells is determined by measuring the incorporation of 3H-thymidine into the DNA of dividing cells.

Myeloid-derived suppressor cells

(MDSCs). A group of immature CD11b+GR1+ cells (which include precursors of macrophages, granulocytes, DCs and myeloid cells) that are produced in response to various tumour-derived cytokines. These cells have been shown to induce tumour-associated antigen-specific CD8+ T cell tolerance.

Osteoclast

Multinucleated giant cells, of myeloid origin, that are responsible for bone resorption. Osteoclasts degrade bone matrix and solubilize calcium from bone.

Plasmacytoid DCs

An immature DC with a morphology that resembles that of a plasma cell. Plasmacytoid DCs produce type I IFNs in response to viral infection.

Tumour necrosis factor and inducible nitric oxide synthase-producing DC

(TIP DC). Monocyte-derived DCs that produce high quantities of tumour necrosis factor and nitric oxide. These cells develop in mice from GR1+ monocytes during infection with certain bacteria, such as Listeria monocytogenes, or following myocardial damage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geissmann, F., Gordon, S., Hume, D. et al. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol 10, 453–460 (2010). https://doi.org/10.1038/nri2784

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nri2784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing