skip to main content
research-article

A Survey of Mobile Crowdsensing Techniques: A Critical Component for The Internet of Things

Published: 13 June 2018 Publication History

Abstract

Mobile crowdsensing serves as a critical building block for emerging Internet of Things (IoT) applications. However, the sensing devices continuously generate a large amount of data, which consumes much resources (e.g., bandwidth, energy, and storage) and may sacrifice the Quality-of-Service (QoS) of applications. Prior work has demonstrated that there is significant redundancy in the content of the sensed data. By judiciously reducing redundant data, data size and load can be significantly reduced, thereby reducing resource cost and facilitating the timely delivery of unique, probably critical information and enhancing QoS. This article presents a survey of existing works on mobile crowdsensing strategies with an emphasis on reducing resource cost and achieving high QoS. We start by introducing the motivation for this survey and present the necessary background of crowdsensing and IoT. We then present various mobile crowdsensing strategies and discuss their strengths and limitations. Finally, we discuss future research directions for mobile crowdsensing for IoT. The survey addresses a broad range of techniques, methods, models, systems, and applications related to mobile crowdsensing and IoT. Our goal is not only to analyze and compare the strategies proposed in prior works, but also to discuss their applicability toward the IoT and provide guidance on future research directions for mobile crowdsensing.

References

[1]
IEEE Instrumentation and Measurement Society. 2007. IEEE standard for a smart transducer interface for sensors and actuators wireless communication protocols and transducer electronic data sheet (TDES) formats. IEEE Std 1451.5-2007. C1--236.
[2]
U. Adeel, S. Yang, and J. A. McCann. 2014. Self-optimizing citizen-centric mobile urban sensing systems. In Proceedings of the USENIX ICAC.
[3]
C. C. Aggarwal, Y. Xie, and P. S. Yu. 2011. On dynamic data-driven selection of sensor streams. In KDD.
[4]
K. Ashton. 2009. That ‘internet of things’ thing in the real world, things matter more than ideas. RFID Journal (June 2009).
[5]
L. Atzori, A. Iera, and G. Morabito. 2010. The internet of things: A survey. Computer Networks 54, 15 (2010), 2787--2850.
[6]
L. Atzori, A. Iera, and G. Morabito. 2014. From “smart objects” to “social objects”: The next evolutionary step of the Internet of Things. IEEE Communications Magazine 52, 1 (2014), 97--105.
[7]
L. Atzori, A. Iera, G. Morabito, and M. Nitti. 2012. The social internet of things (SIoT) -- when social networks meet the internet of things: Concept, architecture and network characterization. Computer Networks 56 (2012), 3594--3608.
[8]
J. Ballesteros, B. Carbunar, M. Rahman, N. Rishe, and S. Iyengar. 2013. Towards safe cities: A mobile and social networking approach. TPDS PP, 99 (2013), 1.
[9]
J. Ballesteros, M. Rahman, B. Carbunar, and N. Rishe. 2012. Safe cities. A participatory sensing approach. In Proceedings of the LCN.
[10]
P. Bellavista, A. Corradi, L. Foschini, and R. Ianniello. 2015. Scalable and cost-effective assignment of mobile crowdsensing tasks based on profiling trends and prediction: The Participact living lab experience. Sensors 15, 8 (2015), 18613--18640.
[11]
L. Bengtsson, X. Lu, A. Thorson, R. Garfield, and J. Schreeb. 2011. Improved response to disasters and outbreaks by tracking population movements with mobile phone network data: A post-earthquake geospatial study in Haiti. PLoS Med 8, 8 (2011), e1001083 1--9.
[12]
C. Bisdikian, L. Kaplan, and M. Srivastava . 2013. On the quality and value of information in sensor networks. ACM TOSN 9, 4 (2013), 48.
[13]
J. Blom, D. Viswanathan, M. Spasojevic, J. Go, K. Acharya, and R. Ahoniu. 2010. Fear and the city: Role of mobile services in harnessing safety and security in urban use contexts. In Proceedings of the CHI.
[14]
M. Botts and A. Robin. 2007. OpenGIS sensor model language (SensorML) implementation specification. Technical Report. Open Geospatial Consortium Inc.
[15]
G. Brambilla, M. Picone, S. Cirani, M. Amoretti, and F. Zanichelli. 2014. A simulation platform for large-scale internet of things scenarios in urban environments. In Proceedings of the Urb-IoT.
[16]
G. Burnham, J. Seo, and G. Bekey. 1974. Identification of human driver models in car following. IEEE Transactions on Automated Control 19, 6 (1974), 911--915.
[17]
F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti. 2011. Real-time urban monitoring using cell phones: A case study in Rome. IEEE Transactions on Intelligent Transportation Systems 12, 1 (2011), 141--151.
[18]
Carnot Institutes. 2011. Smart networked objects and internet of things. Carnot Institutes Information Communication Technologies and Micro Nano Technologies alliance, White Paper.
[19]
L.-J. Chen, B.-C. Wang, and W.-Y. Zhu. 2010. The design of puzzle selection strategies for ESP-like GWAP systems. In IEEE Transactions on Computational Intelligence and AI in Games 2, 2 (2010), 120--130.
[20]
C. Chen, D. Zhang, N. Li, and Z. Zhou. 2014. B-Planner: Planning bidirectional night bus routes using large-scale taxi GPS traces. IEEE Transactions on Intelligent Transportation Systems 15, 4 (2014), 1451--1465.
[21]
I. R. Chen, F. Bao, and J. Guo. 2016a. Trust-based service management for social internet of things systems. IEEE Transactions on Dependable and Secure Computing (TDSC) 13, 6 (2016), 684--696.
[22]
Y. Chen, J. Zhou, and M. Guo. 2016b. A context-aware search system for internet of things based on hierarchical context model. Telecommunication Systems 62, 1 (2016), 77--91.
[23]
Y. Chon, N. Lane, Y. Kim, F. Zhao, and H. Cha. 2013. Understanding the coverage and scalability of place-centric crowdsensing. In Proceedings of the UbiComp.
[24]
Y. Chon, N. D. Lane, F. Li, H. Cha, and F. Zhao. 2012. Automatically characterizing places with opportunistic crowdsensing using smartphones. In Proceedings of the ACM UbiComp. 481--490.
[25]
C. Cornelius, A. Kapadia, D. Kotz, D. Peebles, M. Shin, and N. Triandopoulos. 2008. Anonysense: Privacy-aware people-centric sensing. In Proceedings of the ACM MobiSys. 211--224.
[26]
I. Cvijik, Bogdan Ivan, Cristina Kada, and Y. Te. 2015. Towards a crowdsourcing approach for crime prevention. In Proceedings of the ACM UbiComp/ISWC Adjunct. 1367--1372.
[27]
T. Dao, A. K. Roy-Chowdhury, H. V. Madhyastha, S. V. Krishnamurthy, and T. L. Porta. 2014. Managing redundant content in bandwidth constrained wireless networks. In Proceedings of the CoNEXT. 349--361.
[28]
D. Dimov. 2014. Crowdsensing: State of the Art and Privacy Aspects. Retrieved from http://resources.infosecinstitute.com/crowdsensing-state-art-privacy-aspects/.
[29]
S. Distefano, F. Longo, and M. Scarpa. 2015. QoS assessment of mobile crowdsensing services. Journal of Grid Computing (2015).
[30]
A. Dohr, R. Modre-Opsrian, M. Drobics, D. Hayn, and G. Schreier. 2010. The internet of things for ambient assisted living. In Proceedings of the ITNG.
[31]
Y. Dong, A. Hoover, J. Scisco, and E. Muth. 2012. A new method for measuring meal intake in humans via automated wrist motion tracking. Applied Psychophysiology Biofeedback 37, 3 (2012), 205--215.
[32]
J. Eriksson, L. Girod, B. Hull, R. Newton, S. Madden, and H. Balakrishnan. 2008. The pothole patrol: Using a mobile sensor network for road surface monitoring. In Proceedings of the ACM MobiSys. Breckenridge.
[33]
S. Forsström and T. Kanter. 2014. Enabling ubiquitous sensor-assisted applications on the internet-of-things. Personal and Ubiquitous Computing 18, 4 (2014), 977--986.
[34]
R. K. Ganti, F. Ye, and H. Lei. 2011. Mobile crowdsensing: Current state and future challenges. IEEE Communications Magazine 49, 11 (November 2011), 32--39.
[35]
A. Garbett, J. Wardman, B. Kirman, C. Linehan, and S. Lawso. 2015. Anti-social media: Communicating risk through open data, crime maps and locative me. In Proceedings of the HCI.
[36]
A. Garyfalos and K. Almeroth. 2008. Coupons: A multilevel incentive scheme for information dissemination in mobile networks. IEEE TMC 7, 6 (2008), 792--804.
[37]
R. Girau, M. Nitti, and L. Atzori. 2013. Implementation of an experimental platform for the social internet of things. In Proceedings of the IMIS.
[38]
M. Gorlatova, J. Sarik, G. Grebla, M. Cong, I. Kymissis, and G. Zussman. 2014. Movers and shakers: Kinetic energy harvesting for the internet of things. In Proceedings of the SIGMETRICS. Austin, 407--419.
[39]
P. Guillemin and P. Friess. 2009. Internet of things strategic research roadmap. The Cluster of European Research Projects, Tech. Rep.
[40]
B. Guo, Z. Wang, Z. Yu, Y. Wang, N. Yen, R. Huang, and X. Zhou. 2015. Mobile crowd sensing and computing: The review of an emerging human-powered sensing paradigm. ACM CSUR 48, 1 (2015), 1--31.
[41]
S. Hasan and E. Curry. 2014. Approximate semantic matching of events for the internet of things. ACM TOIT 14, 1 (2014), Article 2.
[42]
J. Howe. 2006. The rise of crowdsourcing. Wired Magazine 14, 6 (2006), 1--5.
[43]
Y. Hua, W. He, X. Liu, and D. Feng. 2015. SmartEye: Real-time and efficient cloud image sharing for disaster environments. In Proceedings of the INFOCOM.
[44]
B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu, E. Shih, H. Balakrishnan, and S. Madden. 2006. CarTel: A distributed mobile sensor computing system. In Proceedings of the ACM SenSys. Boulder.
[45]
International Telecommunication Union. 2005. ITU internet reports 2005: The internet of things. International Telecommunication Union, Workshop Report.
[46]
S. Jami, A. Basalamah, A. Lbath, and M. Youssef. 2015. Hybrid participatory sensing for analyzing group dynamics in the largest annual religious gathering. In Proceedings of the ACM UbiComp. 547--558.
[47]
A. Kamra, V. Misra, J. Feldman, and D. Rubenstein. 2006. Growth codes: Maximizing sensor network data persistence. In Proceedings of the SIGCOMM.
[48]
M. Kay, E. Choe, J. Shepherd, B. Greensten, N. Watson, S. Consolvo, and J. Kientz. 2012. Lullaby: A capture 8 access system for understanding the sleep environment. In Proceedings of the UbiComp.
[49]
A. Kazmi, M. O’Grady, D. Delaney, A. Ruzzelli, and G. O’Hare. 2014. A review of wireless-sensor-network-enabled building energy management systems. ACM TOSN 10, 4 (2014), 66:1--66:43.
[50]
W. Khan, Y. Xiang, M. Aalsalem, and Q. Arshad. 2013. Mobile phone sensing systems: A survey. IEEE Communications Surveys Tutorials 15, 1 (2013), 402--427.
[51]
H. Kirak, L. David, R. Umakishore, O. Beate, and K. Boris. 2013. Opportunistic spatio-temporal event processing for mobile situation awareness. In Proceedings of the ACM DEBS. 195--206.
[52]
C. Körner and M. Strohmaier. 2010. A call for social tagging datasets. SIGWEB Newsletter, 2:1C2:6.
[53]
O. Kounadi, K. Bowers, and M. Leitner. 2014. Crime mapping on-line: Public perception of privacy issues. Europ Journal on Crime and Policing R 21, 1 (2014), 1--24.
[54]
I. Krontiris and T. Dimitriou. 2013. Privacy-respecting discovery of data providers in crowd-sensing applications. In Proceedings of the DCoSS.
[55]
J. Krumm. 2009. A survey of computational location privacy. Personal and Ubiquitous Computing 13, 6 (2009), 391--399.
[56]
S. Kumar, S. Gil, D. Katabi, and D. Rus. 2014. Accurate indoor localization with zero start-up cost. In Proc. of MOBICOM.
[57]
A. Kumbhare, Y. Simmhan, and V. K. Prasanna. 2013. Exploiting application dynamism and cloud elasticity for continuous dataflows. In Proceedings of the ACM SC.
[58]
N. D. Lane, Y. Chon, L. Zhou, Y. Zhang, F. Li, D. Kim, G. Ding, F. Zhao, and H. Cha. 2013. Piggyback crowdsensing (PCS): Energy efficient crowdsourcing of mobile sensor data by exploiting smartphone app opportunities. In Proceedings of the SenSys.
[59]
E. Law and L. von Ahn. 2009. Input-agreement: A new mechanism for data collection using human computation games. In Proceedings of the CHI.
[60]
V. Lenders, E. Koukoumidis, P. Zhang, and M. Martonosi. 2008. Location-based trust for mobile user-generated content: Applications, challenges, and implementations. In Proceedings of the HotMobile. 60--64.
[61]
J. Li, X. Chen, M. Li, J. Li, P. Lee, and W. Lou. 2014. Secure deduplication with efficient and reliable convergent key management. TPDS 25, 6 (2014), 1615--1625.
[62]
J. Li, Y. Zhu, J. Yu, Q. Zhang, and L. Ni. 2015. Towards redundancy-aware data utility maximization in crowdsourced sensing with smartphones. In Proceedings of the ICDCS.
[63]
A. Liu and D. Salvucci. 2001. Modeling and prediction of human driver behavior. In Proceedings of the HCI.
[64]
J. Liu, H. Shen, and L. Yu. 2017. Question quality analysis and prediction in community question answering services with coupled mutual reinforcement. IEEE TSC 10, 2 (2017), 286--301.
[65]
J. Liu, H. Shen, and X. Zhang. 2016. A survey of mobile crowdsensing techniques: A critical component for the internet of things. In Proceedings of the 6th International Workshop on Context-Aware Performance Engineering for the Internet of Things (ContextQoS) in conjunction with ICCCN.
[66]
J. Liu, L. Yu, H. Shen, Y. He, and J. Hallstrom. 2015. Characterizing data deliverability of greedy routing in wireless sensor networks. In Proceedings of the SECON.
[67]
L. Liu, A. Biderman, and C. Ratti. 2009. Urban mobility landscape: Real time monitoring of urban mobility patterns. In Proceedings of the CUPUM.
[68]
J. Lu, T. Sookoor, V. Srinivasan, G. Gao, B. Holben, J. Stankovic, E. Field, and K. Whitehouse. 2010. The smart thermostat: Using occupancy sensors to save energy in homes. In Proceedings of the SenSys.
[69]
N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil. 2013. Reliability for emergency applications in internet of things. In Proceedings of the DCOSS.
[70]
N. Maisonneuve, M. Stevens, M. E. Niessen, and L. Steels. 2009. Noisetube: Measuring and mapping noise pollution with mobile phone. In Information Technologies in Environmental Engineering. Ioannis N. Athanasiadis, Andrea E. Rizzoli, Pericles A. Mitkas, and Jorge Marx Gómez (Eds.). Springer Berlin Heidelberg, 215--228.
[71]
N. Maisonneuve, M. Stevens, and B. Ochab. 2010. Participatory noise pollution monitoring using mobile phones. Information Polity 15 (2010), 51--71.
[72]
E. Miluzzo, N. Lane, K. Fodor, R. Peterson, H. Lu, M. Musolesi, S. Eisenman, X. Zheng, and A. Campbell. 2008. Sensing meets mobile social networks: The design, implementation and evaluation of the cenceme application. In Proceedings of the SenSys.
[73]
P. Mohan, V. Padmanabhan, and R. Ramjee. 2008. Nericell: Rich monitoring of road and traffic conditions using mobile smartphones. In Proceedings of the ACM SenSys.
[74]
M. Mun, S. Reddy, K. Shilton, N. Yau, J. Burke, D. Estrin, M. Hansen, E. Howard, R. West, and P. Boda. 2009. PEIR, the personal environmental impact report, as a platform for participatory sensing systems research. In Proceedings of the ACM MobiSys.
[75]
M. Nitti, L. Atzori, and I. Cvijikj. 2014. Network navigability in the social internet of things. In Proceedings of the WF-IoT.
[76]
M. Nitti, L. Atzori, and I. Cvijikj. 2015. Friendship selection in the social internet of things: Challenges and possible strategies. IEEE Internet Things Journal 2, 3 (June 2015), 240--247.
[77]
M. Nitti, R. Girau, and L. Atzori. 2014. Trustworthiness management in the social internet of things. TKDE 26, 5 (May 2014), 1253--1266.
[78]
B. Pan, Y. Zheng, D. Wilkie, and C. Shahabi. 2013. Crowd sensing of traffic anomalies based on human mobility and social media. In Proceedings of the SIGSPATIAL GIS.
[79]
D. Peng, F. Wu, and G. Chen. 2015. Pay as how well you do: A quality based incentive mechanism for crowdsensing. In Proceedings of the MOBIHOC.
[80]
C. Perera, P. Jayaraman, A. Zaslavsky, P. Christen, and D. Georgakopoulos. 2013. Dynamic configuration of sensors using mobile sensor hub in internet of things paradigm. In Proceedings of the ISSNIP. Melbourne.
[81]
S. Phithakkitnukoon and P. Oliver. 2011. Sensing urban social geography using online social networking data. In Proceedings of the ICWSM.
[82]
S. Pietschmann, A. Mitschick, R. Winkler, and K. Meissner. 2008. Croco: Ontology-based, cross-application context management. In SMAP.
[83]
P. Quinton. 2011. The impact of information about crime and policing on public perceptions: The results of a randomised controlled trial. Notional Policing Improvement Agency.
[84]
M.-R. Ra, B. Liu, T. L. Porta, and R. Govindan. 2012. Medusa: A programming framework for crowd-sensing applications. In Proceedings of the ACM MobiSys.
[85]
M. Rabbi, S. Ali, T. Choudhury, and E. Berke. 2011. Passive and in-situ assessment of mental and physical well-being using mobile sensors. In Proceedings of the UbiComp.
[86]
A. Rai, K. Chintalapudi, V. Padmanabhan, and R. Sen. 2012. Zee: Zero-effort crowdsourcing for indoor localization. In Proceedings of the MOBICOM.
[87]
R. Rana, C. Chou, S. Kanhere, N. Bulusu, and W. Hu. 2010. Ear-phone: An end-to-end participatory urban noise mapping system. In Proceedings of the ISPN.
[88]
J. Roemer, M. Groman, Z. Yang, Y. Wang, C. C. Tan, and N. Mi. 2014. Improving virtual machine migration via deduplication. In Proceedings of the IEEE MASS.
[89]
J. Rogstadius, M. Vukovic, C. Teixeira, V. Kostakos, E. Karapanos, and J. Laredo. 2013. Crowdsourced social media curation for disaster awareness. IBM Journal of Research and Development 57, 5 (2013), 4:1--4:13.
[90]
P. Rothenpieler, B. Altakrouri, O. Kleine, and L. Ruge. 2014. Distributed crowd-sensing infrastructure for personalized dynamic IoT spaces. In Proceedings of the URB-IOT.
[91]
T. Sakaki, M. Okazaki, and Y. Matsuo. 2010. Earthquake shakes Twitter users: Real-time event detection by social sensors. In Proceedings of the WWW.
[92]
S. Saroiu and A. Wolman. 2009. Enabling new mobile applications with location proofs. In Proceedings of the HotMobile. 1--6.
[93]
H. Shen, Z. Li, J. Liu, and J. E. Grant. 2015a. Knowledge sharing in the online social network of Yahoo! Answers and its implications. IEEE Transactions on Computers (TC) 64, 6 (June 2015), 1715C1728.
[94]
H. Shen, J. Liu, K. Chen, J. Liu, and S. Moyer. 2015b. SCPS: A social-aware distributed cyber-physical human-centric search engine. IEEE Transactions on Computers (TC) 64 (2015), 518--532.
[95]
W. Sherchan, P. P. Jayaraman, S. Krishnaswamy, A. Zaslavsky, S. Loke, and A. Sinha. 2012. Using on-the-move mining for mobile crowdsensing. In Proceedings of the MDM. 115--124.
[96]
A. Sheth. 2009. Citizen sensing, social signals, and enriching human experience. IEEE Internet Computing 13, 4 (2009), 87--92.
[97]
J. Stankovic. 2014. Research directions for the internet of things. IEEE Internet Things Journal 1, 1 (2014), 3--9.
[98]
S. A. Stansfeld. 2003. Noise pollution: Non-auditory effects on health. British Medical Bulletin 68, 1 (2003), 243--257.
[99]
H. Susmita and S. Anjali. 2012. Identity management framework for cloud based internet of things. In Proceedings of the SecurIT.
[100]
K. Tangwongsan, H. Pucha, D. G. Andersen, and M. Kaminsky. 2010. Efficient similarity estimation for systems exploiting data redundancy. In Proceedings of the INFOCOM.
[101]
F. A. Teixeira, G. V. Machado, F. M. Q. Pereira, and L. B. Oliveira. 2015. SIoT: Securing the internet of things through distributed system analysis. In Proceedings of the IPSN. 310--321.
[102]
I. Vasilescu, K. Kotay, D. Rus, M. Dunbabin, and P. Corke. 2005. Data collection, storage, and retrieval with an underwater sensor network. In Proceedings of the SenSys.
[103]
I. Vergara-Laurens, L. Jaimes, and M. Labrador. 2017. Privacy-preserving mechanisms for crowdsensing: survey and research challenges. IEEE Internet of Things Journal 4, 4 (2017), 855--869.
[104]
L. von Ahn and L. Dabbish. 2004. Labeling images with a computer game. In Proceedings of the ACM CHI.
[105]
L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed. 2016. Sparse mobile crowdsensing: Challenges and opportunities. IEEE Communications Magazine 54, 7 (2016), 161--167.
[106]
Y. Wang, W. Hu, Y. Wu, and G. Cao. 2014. SmartPhoto: A resource-aware crowdsourcing approach for image sensing with smartphones. In Proceedings of the MOBIHOC. Philadelphia, 113--122.
[107]
U. Weinsberg, Q. Li, N. Taft, A. Balachandran, V. Sekar, G. Iannaccone, and S. Seshan. 2012. CARE: Content aware redundancy elimination for challenged networks. In Proceedings of the Hotnets. Seattle.
[108]
A. Wesolowski, N. Eagle, A. Tatem, D. Smith, A. Noor, R. Snow, and C. Buckee. 2012. Quantifying the impact of human mobility on malaria. Science 338, 6104 (2012), 267--270.
[109]
A. Whitmore, A. Agarwal, and L. Da Xu. 2015. The Internet of Things—a survey of topics and trends. Information Systems Frontiers 17, 2 (2015), 261--274.
[110]
W. Willett, S. Ginosar, A. Steinitz, B. Hartmann, and M. Agrawala. 2013. Identifying redundancy and exposing provenance in crowdsourced data analysis. TVCG 19, 12 (2013), 2198--2206.
[111]
L. Xu, X. Hao, N. Lane, X. Liu, and T. Moscibroda. 2015a. Cost-aware compressive sensing for networked sensing systems. In Proceedings of the IPSN.
[112]
L. Xu, X. Hao, N. Lane, X. Liu, and T. Moscibroda. 2015b. More with Less: Lowering user burden in mobile crowdsourcing through compressive sensing. In Proceedings of the ACM UbiComp. 659--670.
[113]
T. Yan, V. Kumar, and D. Ganesan. 2010. CrowdSearch: Exploiting crowds for accurate real-time image search on mobile phones. In Proceedings of the MobiSys.
[114]
L. Yao, Q. Sheng, A. Ngu, and B. Gao. 2014. Keeping you in the loop: Enabling web-based things management in the internet of things. In Proceedings of the ACM CIKM.
[115]
M. Ye, P. Yin, W. Lee, and D. Lee. 2011. Exploiting geographical influence for collaborative point-of-interest recommendation. In Proceedings of the SIGIR.
[116]
N. Yuan, Y. Zheng, L. Zhang, and X. Xie. 2013. T-finder: A recommender system for finding passengers and vacant taxis. TKDE 25, 10 (2013), 2390--2403.
[117]
A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi. 2014. Internet of things for smart cities. IEEE Internet Things Journal 1, 1 (2014), 22--32.
[118]
Z. Zhan, X. Liu, Y. Gong, and J. Zhang. 2015. Cloud computing resource scheduling and a survey of its evolutionary approaches. Computer Surveys 47, 4 (2015).
[119]
D. Zhang, H. Xiong, L. Wang, and G. Chen. 2014. CrowdRecruiter: Selecting participants for piggyback crowdsensing under probabilistic coverage constraint. In Proceedings of the ACM UbiComp. 703--714.
[120]
W. Zhang, J. Wang, and W. Feng. 2013. Combining latent factor model with location features for event-based group recommendation. In Proceedings of the KDD.
[121]
X. Zhang, Z. Yang, W. Sun, Y. Liu, S. Tang, K. Xing, and X. Mao. 2016. Incentives for mobile crowd sensing: A survey. IEEE Communications Surveys 8 Tutorials 18, 1 (2016), 54--67.
[122]
Y. Zheng, F. Liu, and H. Hsieh. 2013. U-Air: When urban air quality inference meets big data. In Proceedings of the KDD. 1436--1444.
[123]
Y. Zheng and X. Xie. 2011. Learning travel recommendations from user-generated GPS traces. ACM TIST 2, 1 (2011), 1--29.
[124]
P. Zhou, Y. Zheng, and M. Li. 2014. How long to wait? Predicting bus arrival time with mobile phone based participatory sensing. TMC 13, 6 (2014), 1228--1241.
[125]
Y. Zhu and D. Shasha. 2002. StatStream: Statistical monitoring of thousands of data streams in real time. In Proceedings of the VLDB. 358--369.
[126]
Z. Zhu, L. Zhang, and R. Wakikawa. 2011. Supporting mobility for internet cars. IEEE Communications Magazine 49, 5 (2011), 180--186.
[127]
D. Zordan, B. Martinez, I. Vilajosana, and M. Rossi. 2014. On the performance of lossy compression schemes for energy constrained sensor networking. ACM TOSN 11, 1 (2014), 1--34.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Cyber-Physical Systems
ACM Transactions on Cyber-Physical Systems  Volume 2, Issue 3
Special Issue on the Internet of Things: Part 2
July 2018
181 pages
ISSN:2378-962X
EISSN:2378-9638
DOI:10.1145/3232714
  • Editor:
  • Tei-Wei Kuo
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Journal Family

Publication History

Published: 13 June 2018
Accepted: 01 January 2018
Revised: 01 June 2017
Received: 01 August 2016
Published in TCPS Volume 2, Issue 3

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Internet of Things
  2. Mobile crowdsensing
  3. cost-effectiveness
  4. quality of service
  5. redundancy elimination

Qualifiers

  • Research-article
  • Research
  • Refereed

Funding Sources

  • U.S. NSF
  • Microsoft Research Faculty Fellowship

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)112
  • Downloads (Last 6 weeks)12
Reflects downloads up to 20 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Diversity-Based Recruitment in Crowdsensing by Combinatorial Multi-Armed BanditsTsinghua Science and Technology10.26599/TST.2024.901005330:2(732-747)Online publication date: Apr-2025
  • (2025)Mobile crowdsourcing based on 5G and 6G: A surveyNeurocomputing10.1016/j.neucom.2024.128993618(128993)Online publication date: Feb-2025
  • (2025)System-wide IoT design and programming: Patterns for decentralised collective processesInternet of Things10.1016/j.iot.2024.10143629(101436)Online publication date: Jan-2025
  • (2025)A hyper-heuristic optimization multi-task allocation in mobile crowdsensing based on inherent attributesAd Hoc Networks10.1016/j.adhoc.2024.103717168(103717)Online publication date: Mar-2025
  • (2024)Local Differential Privacy-Based Privacy-Preserving Data Range Query Scheme for Electric Vehicle ChargingIEEE Transactions on Network Science and Engineering10.1109/TNSE.2023.330441311:1(673-684)Online publication date: Jan-2024
  • (2024)Probabilistic Control of Dynamic Crowds Toward Uniform Spatial-Temporal CoverageIEEE Transactions on Mobile Computing10.1109/TMC.2022.323153023:2(1050-1065)Online publication date: 1-Feb-2024
  • (2024)Studying the Robustness of Anti-Adversarial Federated Learning Models Detecting Cyberattacks in IoT Spectrum SensorsIEEE Transactions on Dependable and Secure Computing10.1109/TDSC.2022.320453521:2(573-584)Online publication date: 1-Mar-2024
  • (2024)UAV-Assisted Active Sparse Crowdsensing for Ground Signal Map Construction Based on 3-D Spatial–Temporal CorrelationIEEE Internet of Things Journal10.1109/JIOT.2024.339940911:16(27260-27274)Online publication date: 15-Aug-2024
  • (2024)Efficient Certificateless Blind Signature Scheme With Conditional Revocation for Mobile Crowdsensing Within Smart CityIEEE Internet of Things Journal10.1109/JIOT.2024.335002311:9(15985-15997)Online publication date: 1-May-2024
  • (2024)Adaptive Sampling Allocation for Distributed Data Storage in Compressive CrowdSensingIEEE Internet of Things Journal10.1109/JIOT.2023.333184811:7(12022-12032)Online publication date: 1-Apr-2024
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media