Ulla Wandinger, Albert Ansmann, Jens Reichardt, and Terry Deshler, "Determination of stratospheric aerosol microphysical properties from independent extinction and backscattering measurements with a Raman lidar," Appl. Opt. 34, 8315-8329 (1995)
An algorithm that permits the retrieval of profiles of particle mass and surface-area concentrations in the stratospheric aerosol layer from independently measured aerosol (particle and Rayleigh) and molecule (Raman or Rayleigh) backscatter signals is developed. The determination is based on simultaneously obtained particle extinction and backscatter profiles and on relations between optical and microphysical properties found from Mie-scattering calculations for realistic stratospheric particle size distributions. The size distributions were measured with particle counters released on balloons from Laramie, Wyoming, between June 1991 and April 1994. Mass and surface-area concentrations can be retrieved with relative errors of 10–20% and 20–40%, respectively, with a laser wavelength of 355 nm and with errors of 20–30% and 30–60%, respectively, with a laser wavelength of 308 nm. Lidar measurements taken within the first three years after the eruption of Mt. Pinatubo in June 1991 are shown. Surface-area concentrations around 20 μm2 cm−3 and mass concentrations of 3 to 6 μg m−3 were found until spring 1993.
You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.
Coefficients of the Fitting Curves
, and S
for a Wavelength of 355 nma
y
W (%)
(μm)
a0
a1
a2
a3
b0
b1
40
0.52
−1.292
31.00
−75.62
58.71
2.892
−0.492
50
0.52
−1.229
30.76
−75.35
58.64
2.897
−0.497
60
0.52
−1.156
30.46
−74.91
58.39
2.899
−0.499
70
0.52
−1.066
30.07
−74.25
57.95
2.896
−0.496
75
0.52
−1.001
29.77
−73.74
57.58
2.891
−0.491
80
0.52
−0.952
29.55
−73.36
57.28
2.885
−0.485
40
0.55
−0.0133
0.2797
0.192
−0.523
0.0767
0.0633
50
0.51
−0.0126
0.2545
0.482
−0.953
0.0896
0.0524
60
0.48
−0.0116
0.2217
0.849
−1.484
0.1074
0.0396
70
0.47
−0.0111
0.1875
1.308
−2.143
0.1360
0.0160
75
0.46
−0.0110
0.1620
1.668
−2.650
0.1572
0.0028
80
0.46
−0.0108
0.1407
1.961
−3.062
0.1815
−0.0235
S
40
0.53
87.9
−209.2
110.7
107.7
32.1
−15.1
50
0.52
91.9
−279.2
308.1
−50.1
29.5
−12.5
60
0.50
95.4
−346.9
502.8
−210.3
26.5
−10.2
70
0.50
98.7
−418.7
719.2
−399.5
22.7
−6.8
75
0.50
100.4
−463.6
860.3
−528.7
19.8
−4.4
80
0.55
101.3
−492.5
954.1
−616.5
18.2
−3.2
The fit curves have the form y = a0 + a1 + a2 + a3 for
<
and y = b0 + b1 for
>
. W is the H2SO4 weight content.
Table 2
Coefficients of the Fitting Curves as in Table 1, but for 308 nm
y
W (%)
(μm)
a0
a1
a2
a3
b0
b1
40
0.53
−0.525
27.13
−69.10
54.56
2.817
−0.467
50
0.53
−0.471
26.95
−69.02
54.68
2.810
−0.460
60
0.53
−0.411
26.76
−68.98
54.85
2.799
−0.449
70
0.53
−0.322
26.53
−69.23
55.50
2.785
−0.435
75
0.53
−0.263
26.40
−69.53
56.11
2.777
−0.427
80
0.53
−0.219
26.31
−69.81
56.64
2.772
−0.422
40
0.46
−0.0272
0.4841
−0.007
−0.764
0.0937
0.0563
50
0.45
−0.0319
0.5295
0.055
−0.946
0.1119
0.0431
60
0.44
−0.0329
0.5210
0.403
−1.509
0.1346
0.0254
70
0.42
−0.0453
0.6462
0.467
−1.955
0.1626
0.0024
75
0.42
−0.0515
0.7011
0.656
−2.381
0.1912
−0.0212
80
0.42
−0.0547
0.7142
0.968
−2.899
0.2205
−0.0455
S
40
0.55
104.0
−472.0
927.9
−619.2
30.2
−14.7
50
0.55
105.0
−510.0
1048.0
−729.2
26.4
−11.4
60
0.55
104.6
−535.2
1121.6
−785.2
24.3
−9.8
70
0.41
102.7
−560.1
1209.1
−853.1
19.9
−5.9
75
0.40
101.1
−573.4
1264.0
−909.7
17.2
−3.4
80
0.39
99.8
−582.9
1305.1
−955.5
14.9
−1.4
Table 3
Coefficients of the Conversion-Factor Fitting Curves for a Wavelength of 355 nma
W (%)
Sc (sr)
S < Sc
S > Sc
a
Δa
b
Δb
a
Δa
b
Δb
Extinction to Surface Area: y = CαA = 4/
40
40.3
1.627
0.067
−0.0038
0.0020
0.259
0.298
0.0302
0.0057
50
40.3
1.519
0.070
−0.0003
0.0022
0.216
0.309
0.0320
0.0061
60
37.8
1.561
0.063
−0.0022
0.0022
0.310
0.279
0.0310
0.0058
70
34.5
1.547
0.057
−0.0022
0.0022
0.474
0.256
0.0290
0.0056
75
31.5
1.525
0.054
−0.0016
0.0022
0.614
0.229
0.0273
0.0053
80
29.5
1.538
0.051
−0.0026
0.0023
0.685
0.218
0.0263
0.0052
Backscattering to Surface Area: y = CβA = 4/
40
40.3
3.34
2.39
1.395
0.072
−81.8
16.6
3.35
0.32
50
40.3
−1.66
2.53
1.565
0.081
−81.0
16.7
3.49
0.33
60
37.8
0.53
2.15
1.477
0.075
−71.3
14.6
3.35
0.30
70
34.5
0.38
1.84
1.472
0.070
−59.3
12.8
3.17
0.28
75
31.5
−0.25
1.60
1.496
0.067
−49.9
11.1
3.01
0.26
80
29.5
0.44
1.45
1.456
0.064
−44.9
10.4
2.92
0.25
Extinction to Volume: y = CαV = 4
/3
40
40.3
0.366
0.007
−0.0057
0.0002
0.186
0.006
−0.0013
0.0001
50
40.3
0.350
0.007
−0.0057
0.0002
0.169
0.006
−0.0011
0.0001
60
37.8
0.334
0.008
−0.0057
0.0003
0.159
0.006
−0.0010
0.0001
70
34.5
0.315
0.008
−0.0057
0.0003
0.146
0.005
−0.0009
0.0001
75
31.5
0.305
0.008
−0.0058
0.0003
0.142
0.005
−0.0008
0.0001
80
29.5
0.299
0.008
−0.0059
0.0003
0.139
0.005
−0.0008
0.0001
Backscattering to Volume: y = CβV = 4
/3
40
40.3
6.06
0.15
−0.013
0.004
3.39
0.25
0.050
0.005
50
40.3
5.35
0.17
−0.007
0.006
2.76
0.28
0.057
0.006
60
37.8
4.61
0.18
0.001
0.006
2.32
0.26
0.061
0.005
70
34.5
3.79
0.16
0.011
0.006
1.79
0.23
0.067
0.005
75
31.5
3.29
0.15
0.017
0.006
1.60
0.20
0.067
0.005
80
29.5
3.00
0.14
0.020
0.006
1.47
0.19
0.068
0.005
Lidar Ratio to Effective Radius: y =
40
40.3
0.694
0.018
−0.0102
0.0005
0.489
0.024
−0.0054
0.0005
50
40.3
0.680
0.018
−0.0106
0.0006
0.463
0.025
−0.0052
0.0005
60
37.8
0.644
0.019
−0.0104
0.0007
0.440
0.024
−0.0050
0.0005
70
34.5
0.610
0.018
−0.0104
0.0007
0.398
0.023
−0.0045
0.0005
75
31.5
0.597
0.017
−0.0108
0.0007
0.375
0.021
−0.0043
0.0005
80
29.5
0.584
0.017
−0.0110
0.0007
0.361
0.020
−0.0041
0.0005
The fit curves have the form y = a + bS. W is the H2SO4 weight content.
Table 4
Coefficients of the Conversion-Factor Fitting Curves as in Table 3, but for 308 nm
W (%)
Sc (sr)
S < Sc
S > Sc
a
Δa
b
Δb
a
Δa
b
Δb
Extinction to Surface Area: y = CαA = 4/
40
32.5
1.749
0.072
−0.0103
0.0028
0.776
0.148
0.0196
0.0034
50
31.1
1.739
0.060
−0.0110
0.0025
0.766
0.139
0.0203
0.0033
60
28.6
1.714
0.053
−0.0112
0.0024
0.828
0.137
0.0197
0.0034
70
25.2
1.732
0.045
−0.0141
0.0023
0.906
0.124
0.0187
0.0033
75
22.8
1.720
0.040
−0.0152
0.0022
0.965
0.140
0.0179
0.0038
80
22.3
1.632
0.041
−0.0110
0.0024
0.993
0.148
0.0176
0.0041
Backscattering to Surface Area: y = CβA = 4/
40
32.5
5.38
1.95
1.270
0.076
−39.8
7.7
2.59
0.17
50
31.1
5.56
1.56
1.236
0.065
−37.2
7.0
2.56
0.17
60
28.6
4.68
1.26
1.247
0.058
−32.7
6.7
2.49
0.17
70
25.2
5.24
0.98
1.179
0.050
−26.4
5.7
2.37
0.15
75
22.8
4.82
0.83
1.168
0.046
−23.9
6.3
2.32
0.17
80
22.3
2.61
0.82
1.284
0.049
−22.4
6.4
2.29
0.18
Extinction to Volume: y = CαV = 4
/3
40
32.5
0.418
0.019
−0.0091
0.0007
0.174
0.005
−0.0015
0.0001
50
31.1
0.397
0.016
−0.0091
0.0007
0.167
0.005
−0.0015
0.0001
60
28.6
0.371
0.016
−0.0089
0.0007
0.157
0.005
−0.0014
0.0001
70
25.2
0.335
0.017
−0.0082
0.0008
0.148
0.006
−0.0013
0.0001
75
22.8
0.324
0.016
−0.0085
0.0009
0.138
0.005
−0.0012
0.0001
80
22.3
0.315
0.014
−0.0087
0.0008
0.129
0.005
−0.0011
0.0001
Backscattering to Volume: y = CβV = 4/
/3
40
32.5
5.63
0.48
−0.039
0.019
2.92
0.18
0.036
0.004
50
31.1
5.06
0.38
−0.037
0.016
2.57
0.17
0.039
0.004
60
28.6
4.13
0.36
−0.017
0.017
2.18
0.18
0.043
0.004
70
25.2
3.12
0.36
0.010
0.018
1.79
0.17
0.047
0.005
75
22.8
2.73
0.31
0.014
0.017
1.52
0.18
0.049
0.005
80
22.3
2.48
0.25
0.014
0.015
1.30
0.17
0.052
0.005
Lidar Ratio to Effective Radius: y =
40
32.5
0.764
0.039
−0.0153
0.0015
0.427
0.018
−0.0050
0.0004
50
31.1
0.732
0.033
−0.0153
0.0014
0.419
0.018
−0.0051
0.0004
60
28.6
0.691
0.032
−0.0151
0.0015
0.391
0.019
−0.0048
0.0005
70
25.2
0.623
0.032
−0.0135
0.0016
0.367
0.019
−0.0046
0.0005
75
22.8
0.607
0.029
−0.0141
0.0016
0.336
0.020
−0.0042
0.0005
80
22.3
0.604
0.026
−0.0153
0.0015
0.315
0.020
−0.0039
0.0006
Table 5
Relative Systematic Errors Δβ/β, Δα/α, and ΔS/S (in Percent) as a Result of Uncertainties in Temperature (ΔT), Ozone Concentration (ΔO3, for 308 nm only), Reference Values [Δβ(z0)], and Mean Relative Systematic Errors (MRSE) for Measurement Wavelengths of 308 and 355 nma
Different absolute values of β and α corresponding to different stratospheric perturbations observed during the first 3 years after the Mt. Pinatubo eruption in June 1991 are considered. Cases 1 and 2 characterize the situation until spring 1993.
Case 1, β = 0.00075 km−1 sr−1, α = 0.015 km−1, S = 20 sr; case 2, β = 0.0005 km−1 sr−1, α = 0.01 km−1, S = 20 sr; case 3, β = 0.00025 km−1 sr−1, α = 0.005 km−1, S = 20 sr; case 4, β = 0.000125 km−1 sr−1, α = 0.0025 km−1, S = 20 sr.
Table 6
Coefficients of the Fitting Curves as in Table 1, but for 532 nm
y
W (%)
(μm)
a0
a1
a2
a3
b0
b1
40
0.45
−1.218
17.01
−13.62
−10.07
2.979
−0.479
50
0.45
−1.289
18.21
−17.52
−6.56
2.974
−0.474
60
0.45
−1.374
19.68
−22.41
−2.02
2.968
−0.468
70
0.45
−1.471
21.40
−28.32
3.63
2.961
−0.461
75
0.45
−1.515
22.18
−31.06
6.31
2.958
−0.458
80
0.45
−1.536
22.56
−32.43
7.66
2.956
−0.456
40
0.55
−0.0032
0.1015
0.186
−0.294
−0.0007
0.1107
50
0.55
−0.0029
0.0973
0.243
−0.328
0.0200
0.0900
60
0.55
−0.0023
0.0881
0.331
−0.379
0.0439
0.0711
70
0.55
−0.0014
0.0731
0.458
−0.449
0.0748
0.0502
75
0.55
−0.0008
0.0627
0.532
−0.492
0.0916
0.0384
80
0.55
−0.0005
0.0579
0.568
−0.511
0.1013
0.0307
S
40
0.55
7.4
614.6
−1838.9
1523.1
66.4
−43.4
50
0.55
9.6
593.3
−1863.5
1594.2
55.2
−32.2
60
0.54
12.8
560.4
−1866.0
1656.9
44.3
−22.3
70
0.53
17.4
510.1
−1821.0
1684.4
34.9
−14.9
75
0.52
19.8
482.4
−1781.4
1677.8
30.7
−11.2
80
0.52
21.0
467.5
−1756.8
1669.5
29.1
−10.1
Tables (6)
Table 1
Coefficients of the Fitting Curves
, and S
for a Wavelength of 355 nma
y
W (%)
(μm)
a0
a1
a2
a3
b0
b1
40
0.52
−1.292
31.00
−75.62
58.71
2.892
−0.492
50
0.52
−1.229
30.76
−75.35
58.64
2.897
−0.497
60
0.52
−1.156
30.46
−74.91
58.39
2.899
−0.499
70
0.52
−1.066
30.07
−74.25
57.95
2.896
−0.496
75
0.52
−1.001
29.77
−73.74
57.58
2.891
−0.491
80
0.52
−0.952
29.55
−73.36
57.28
2.885
−0.485
40
0.55
−0.0133
0.2797
0.192
−0.523
0.0767
0.0633
50
0.51
−0.0126
0.2545
0.482
−0.953
0.0896
0.0524
60
0.48
−0.0116
0.2217
0.849
−1.484
0.1074
0.0396
70
0.47
−0.0111
0.1875
1.308
−2.143
0.1360
0.0160
75
0.46
−0.0110
0.1620
1.668
−2.650
0.1572
0.0028
80
0.46
−0.0108
0.1407
1.961
−3.062
0.1815
−0.0235
S
40
0.53
87.9
−209.2
110.7
107.7
32.1
−15.1
50
0.52
91.9
−279.2
308.1
−50.1
29.5
−12.5
60
0.50
95.4
−346.9
502.8
−210.3
26.5
−10.2
70
0.50
98.7
−418.7
719.2
−399.5
22.7
−6.8
75
0.50
100.4
−463.6
860.3
−528.7
19.8
−4.4
80
0.55
101.3
−492.5
954.1
−616.5
18.2
−3.2
The fit curves have the form y = a0 + a1 + a2 + a3 for
<
and y = b0 + b1 for
>
. W is the H2SO4 weight content.
Table 2
Coefficients of the Fitting Curves as in Table 1, but for 308 nm
y
W (%)
(μm)
a0
a1
a2
a3
b0
b1
40
0.53
−0.525
27.13
−69.10
54.56
2.817
−0.467
50
0.53
−0.471
26.95
−69.02
54.68
2.810
−0.460
60
0.53
−0.411
26.76
−68.98
54.85
2.799
−0.449
70
0.53
−0.322
26.53
−69.23
55.50
2.785
−0.435
75
0.53
−0.263
26.40
−69.53
56.11
2.777
−0.427
80
0.53
−0.219
26.31
−69.81
56.64
2.772
−0.422
40
0.46
−0.0272
0.4841
−0.007
−0.764
0.0937
0.0563
50
0.45
−0.0319
0.5295
0.055
−0.946
0.1119
0.0431
60
0.44
−0.0329
0.5210
0.403
−1.509
0.1346
0.0254
70
0.42
−0.0453
0.6462
0.467
−1.955
0.1626
0.0024
75
0.42
−0.0515
0.7011
0.656
−2.381
0.1912
−0.0212
80
0.42
−0.0547
0.7142
0.968
−2.899
0.2205
−0.0455
S
40
0.55
104.0
−472.0
927.9
−619.2
30.2
−14.7
50
0.55
105.0
−510.0
1048.0
−729.2
26.4
−11.4
60
0.55
104.6
−535.2
1121.6
−785.2
24.3
−9.8
70
0.41
102.7
−560.1
1209.1
−853.1
19.9
−5.9
75
0.40
101.1
−573.4
1264.0
−909.7
17.2
−3.4
80
0.39
99.8
−582.9
1305.1
−955.5
14.9
−1.4
Table 3
Coefficients of the Conversion-Factor Fitting Curves for a Wavelength of 355 nma
W (%)
Sc (sr)
S < Sc
S > Sc
a
Δa
b
Δb
a
Δa
b
Δb
Extinction to Surface Area: y = CαA = 4/
40
40.3
1.627
0.067
−0.0038
0.0020
0.259
0.298
0.0302
0.0057
50
40.3
1.519
0.070
−0.0003
0.0022
0.216
0.309
0.0320
0.0061
60
37.8
1.561
0.063
−0.0022
0.0022
0.310
0.279
0.0310
0.0058
70
34.5
1.547
0.057
−0.0022
0.0022
0.474
0.256
0.0290
0.0056
75
31.5
1.525
0.054
−0.0016
0.0022
0.614
0.229
0.0273
0.0053
80
29.5
1.538
0.051
−0.0026
0.0023
0.685
0.218
0.0263
0.0052
Backscattering to Surface Area: y = CβA = 4/
40
40.3
3.34
2.39
1.395
0.072
−81.8
16.6
3.35
0.32
50
40.3
−1.66
2.53
1.565
0.081
−81.0
16.7
3.49
0.33
60
37.8
0.53
2.15
1.477
0.075
−71.3
14.6
3.35
0.30
70
34.5
0.38
1.84
1.472
0.070
−59.3
12.8
3.17
0.28
75
31.5
−0.25
1.60
1.496
0.067
−49.9
11.1
3.01
0.26
80
29.5
0.44
1.45
1.456
0.064
−44.9
10.4
2.92
0.25
Extinction to Volume: y = CαV = 4
/3
40
40.3
0.366
0.007
−0.0057
0.0002
0.186
0.006
−0.0013
0.0001
50
40.3
0.350
0.007
−0.0057
0.0002
0.169
0.006
−0.0011
0.0001
60
37.8
0.334
0.008
−0.0057
0.0003
0.159
0.006
−0.0010
0.0001
70
34.5
0.315
0.008
−0.0057
0.0003
0.146
0.005
−0.0009
0.0001
75
31.5
0.305
0.008
−0.0058
0.0003
0.142
0.005
−0.0008
0.0001
80
29.5
0.299
0.008
−0.0059
0.0003
0.139
0.005
−0.0008
0.0001
Backscattering to Volume: y = CβV = 4
/3
40
40.3
6.06
0.15
−0.013
0.004
3.39
0.25
0.050
0.005
50
40.3
5.35
0.17
−0.007
0.006
2.76
0.28
0.057
0.006
60
37.8
4.61
0.18
0.001
0.006
2.32
0.26
0.061
0.005
70
34.5
3.79
0.16
0.011
0.006
1.79
0.23
0.067
0.005
75
31.5
3.29
0.15
0.017
0.006
1.60
0.20
0.067
0.005
80
29.5
3.00
0.14
0.020
0.006
1.47
0.19
0.068
0.005
Lidar Ratio to Effective Radius: y =
40
40.3
0.694
0.018
−0.0102
0.0005
0.489
0.024
−0.0054
0.0005
50
40.3
0.680
0.018
−0.0106
0.0006
0.463
0.025
−0.0052
0.0005
60
37.8
0.644
0.019
−0.0104
0.0007
0.440
0.024
−0.0050
0.0005
70
34.5
0.610
0.018
−0.0104
0.0007
0.398
0.023
−0.0045
0.0005
75
31.5
0.597
0.017
−0.0108
0.0007
0.375
0.021
−0.0043
0.0005
80
29.5
0.584
0.017
−0.0110
0.0007
0.361
0.020
−0.0041
0.0005
The fit curves have the form y = a + bS. W is the H2SO4 weight content.
Table 4
Coefficients of the Conversion-Factor Fitting Curves as in Table 3, but for 308 nm
W (%)
Sc (sr)
S < Sc
S > Sc
a
Δa
b
Δb
a
Δa
b
Δb
Extinction to Surface Area: y = CαA = 4/
40
32.5
1.749
0.072
−0.0103
0.0028
0.776
0.148
0.0196
0.0034
50
31.1
1.739
0.060
−0.0110
0.0025
0.766
0.139
0.0203
0.0033
60
28.6
1.714
0.053
−0.0112
0.0024
0.828
0.137
0.0197
0.0034
70
25.2
1.732
0.045
−0.0141
0.0023
0.906
0.124
0.0187
0.0033
75
22.8
1.720
0.040
−0.0152
0.0022
0.965
0.140
0.0179
0.0038
80
22.3
1.632
0.041
−0.0110
0.0024
0.993
0.148
0.0176
0.0041
Backscattering to Surface Area: y = CβA = 4/
40
32.5
5.38
1.95
1.270
0.076
−39.8
7.7
2.59
0.17
50
31.1
5.56
1.56
1.236
0.065
−37.2
7.0
2.56
0.17
60
28.6
4.68
1.26
1.247
0.058
−32.7
6.7
2.49
0.17
70
25.2
5.24
0.98
1.179
0.050
−26.4
5.7
2.37
0.15
75
22.8
4.82
0.83
1.168
0.046
−23.9
6.3
2.32
0.17
80
22.3
2.61
0.82
1.284
0.049
−22.4
6.4
2.29
0.18
Extinction to Volume: y = CαV = 4
/3
40
32.5
0.418
0.019
−0.0091
0.0007
0.174
0.005
−0.0015
0.0001
50
31.1
0.397
0.016
−0.0091
0.0007
0.167
0.005
−0.0015
0.0001
60
28.6
0.371
0.016
−0.0089
0.0007
0.157
0.005
−0.0014
0.0001
70
25.2
0.335
0.017
−0.0082
0.0008
0.148
0.006
−0.0013
0.0001
75
22.8
0.324
0.016
−0.0085
0.0009
0.138
0.005
−0.0012
0.0001
80
22.3
0.315
0.014
−0.0087
0.0008
0.129
0.005
−0.0011
0.0001
Backscattering to Volume: y = CβV = 4/
/3
40
32.5
5.63
0.48
−0.039
0.019
2.92
0.18
0.036
0.004
50
31.1
5.06
0.38
−0.037
0.016
2.57
0.17
0.039
0.004
60
28.6
4.13
0.36
−0.017
0.017
2.18
0.18
0.043
0.004
70
25.2
3.12
0.36
0.010
0.018
1.79
0.17
0.047
0.005
75
22.8
2.73
0.31
0.014
0.017
1.52
0.18
0.049
0.005
80
22.3
2.48
0.25
0.014
0.015
1.30
0.17
0.052
0.005
Lidar Ratio to Effective Radius: y =
40
32.5
0.764
0.039
−0.0153
0.0015
0.427
0.018
−0.0050
0.0004
50
31.1
0.732
0.033
−0.0153
0.0014
0.419
0.018
−0.0051
0.0004
60
28.6
0.691
0.032
−0.0151
0.0015
0.391
0.019
−0.0048
0.0005
70
25.2
0.623
0.032
−0.0135
0.0016
0.367
0.019
−0.0046
0.0005
75
22.8
0.607
0.029
−0.0141
0.0016
0.336
0.020
−0.0042
0.0005
80
22.3
0.604
0.026
−0.0153
0.0015
0.315
0.020
−0.0039
0.0006
Table 5
Relative Systematic Errors Δβ/β, Δα/α, and ΔS/S (in Percent) as a Result of Uncertainties in Temperature (ΔT), Ozone Concentration (ΔO3, for 308 nm only), Reference Values [Δβ(z0)], and Mean Relative Systematic Errors (MRSE) for Measurement Wavelengths of 308 and 355 nma
Different absolute values of β and α corresponding to different stratospheric perturbations observed during the first 3 years after the Mt. Pinatubo eruption in June 1991 are considered. Cases 1 and 2 characterize the situation until spring 1993.
Case 1, β = 0.00075 km−1 sr−1, α = 0.015 km−1, S = 20 sr; case 2, β = 0.0005 km−1 sr−1, α = 0.01 km−1, S = 20 sr; case 3, β = 0.00025 km−1 sr−1, α = 0.005 km−1, S = 20 sr; case 4, β = 0.000125 km−1 sr−1, α = 0.0025 km−1, S = 20 sr.
Table 6
Coefficients of the Fitting Curves as in Table 1, but for 532 nm