2017 Volume E100.A Issue 12 Pages 2857-2868
It has been reported that malicious third-party IC vendors often insert hardware Trojans into their IC products. How to detect them is a critical concern in IC design process. Machine-learning-based hardware-Trojan detection gives a strong solution to tackle this problem. Hardware-Trojan infected nets (or Trojan nets) in ICs must have particular Trojan-net features, which differ from those of normal nets. In order to classify all the nets in a netlist designed by third-party vendors into Trojan nets and normal ones by machine learning, we have to extract effective Trojan-net features from Trojan nets. In this paper, we first propose 51 Trojan-net features which describe well Trojan nets. After that, we pick up random forest as one of the best candidates for machine learning and optimize it to apply to hardware-Trojan detection. Based on the importance values obtained from the optimized random forest classifier, we extract the best set of 11 Trojan-net features out of the 51 features which can effectively classify the nets into Trojan ones and normal ones, maximizing the F-measures. By using the 11 Trojan-net features extracted, our optimized random forest classifier has achieved at most 100% true positive rate as well as 100% true negative rate in several Trust-HUB benchmarks and obtained the average F-measure of 79.3% and the accuracy of 99.2%, which realize the best values among existing machine-learning-based hardware-Trojan detection methods.