Enhanced Parameter Estimation with Periodically Driven Quantum Probe
Abstract
:1. Introduction
2. Model
2.1. Periodic Modulating Dissipative Jahn–Teller Interaction
2.2. Time-Average Dynamics
3. Quantum Metrology with Periodic Modulating Quantum System: Coherent Evolution
4. Quantum Metrology with Periodic Modulating Dissipative Quantum System
5. Physical Implementation
6. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pezzé, L.; Smerzi, A.; Oberthaler, M.K.; Schmied, R.; Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 2018, 90, 035005. [Google Scholar] [CrossRef]
- Degen, C.L.; Reinharf, F.; Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 2017, 89, 035002. [Google Scholar] [CrossRef]
- Wineland, D.J.; Bollinger, J.J.; Itano, W.M.; Heinzen, D.J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 1994, 50, 67. [Google Scholar] [CrossRef] [PubMed]
- Leibfried, D.; Barrett, M.D.; Schaetz, T.; Britton, J.; Chiaverini, J.; Itano, W.M.; Jost, J.D.; Langer, C.; Wineland, D.J. Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States. Science 2004, 304, 1476–1478. [Google Scholar] [CrossRef]
- Munro, W.J.; Nemoto, K.; Milburn, G.J.; Braunstein, S.L. Weak-force detection with superposed coherent states. Phys. Rev. A 2002, 66, 023819. [Google Scholar] [CrossRef]
- Zanardi, P.; Paris, M.G.A.; Venuti, L.C. Quantum criticality as a resource for quantum estimation. Phys. Rev. A 2008, 78, 042105. [Google Scholar] [CrossRef]
- Ivanov, P.A.; Porras, D. Adiabatic quantum metrology with strongly correlated quantum optical systems. Phys. Rev. A 2013, 88, 023803. [Google Scholar] [CrossRef]
- Garbe, L.; Bina, M.; Keller, A.; Paris, M.G.A.; Felicetti, S. Critical Quantum Metrology with a Finite-Component Quantum Phase Transition. Phys. Rev. Lett. 2020, 124, 120504. [Google Scholar] [CrossRef]
- Chu, Y.; Zhang, S.; Yu, B.; Cai, J. Dynamic Framework for Criticality-Enhanced Quantum Sensing. Phys. Rev. Lett. 2021, 126, 010502. [Google Scholar] [CrossRef]
- Pezzé, L.; Trenkwalder, A.; Fattori, M. Adiabatic Sensing Enhanced by Quantum Criticality. arXiv 2019, arXiv:1906.01447. [Google Scholar]
- Hwang, M.-J.; Puebla, R.; Plenio, M.B. Quantum Phase Transition and Universal Dynamics in the Rabi Model. Phys. Rev. Lett. 2015, 115, 180404. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.L.; Liu, Z.D.; Zhao, W.D.; Wu, Y.K.; Mei, Q.X.; Jiang, Y.; He, L.; Zhang, X.; Zhou, Z.-C.; Duan, L.-M. Observation of a quantum phase transition in the quantum Rabi model with a single trapped ion. Nat. Commun. 2021, 12, 1126. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, P.A. Force sensors with precision beyond the standard quantum limit. Phys. Rev. A 2016, 94, 022330. [Google Scholar] [CrossRef]
- Ivanov, P.A. Efficient approach for quantum sensing field gradients with trapped ions. Opt. Commun. 2017, 405, 355–362. [Google Scholar] [CrossRef]
- Ivanov, P.A. Steady-state force sensing with single trapped ion. Phys. Scr. 2020, 95, 025103. [Google Scholar] [CrossRef]
- Huelga, S.F.; Macchiavello, C.; Pellizzari, T.; Ekert, A.K.; Plenio, M.B.; Cirac, J.I. Improvement of Frequency Standards with Quantum Entanglement. Phys. Rev. Lett. 1997, 79, 3865. [Google Scholar] [CrossRef]
- Bersuker, I. The Jahn-Teller Effect; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Larson, J. Jahn-Teller systems from a cavity QED perspective. Phys. Rev. A 2008, 78, 033833. [Google Scholar] [CrossRef]
- Larson, J.; Sjöqvist, E. Jahn-Teller-induced Berry phase in spin-orbit-coupled Bose-Einstein condensates. Phys. Rev. A 2009, 79, 043627. [Google Scholar] [CrossRef]
- Gambetta, F.M.; Zhang, C.; Hennrich, M.; Lesanovsky, I.; Li, W. Exploring the Many-Body Dynamics Near a Conical Intersection with Trapped Rydberg Ions. Phys. Rev. Lett. 2021, 126, 233404. [Google Scholar] [CrossRef]
- Breuer, H.; Petruccione, F. The Theory of Open Quantum Systems; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Goldman, N.; Dalibard, J. Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields. Phys. Rev. X 2014, 4, 031027. [Google Scholar] [CrossRef]
- Ikeda, T.N.; Sato, M. General description for nonequilibrium steady states in periodically driven dissipative quantum systems. Sci. Adv. 2020, 6, eabb4019. [Google Scholar] [CrossRef] [PubMed]
- Sachdev, S. Quantum Phase Transitions; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Minganti, F.; Biella, A.; Bartolo, N.; Ciuti, C. Spectral theory of Liouvillians for dissipative phase transitions. Phys. Rev. A 2018, 98, 042118. [Google Scholar] [CrossRef]
- Fernández-Lorenzo, S.; Porras, D. Quantum sensing close to a dissipative phase transition: Symmetry breaking and criticality as metrological resources. Phys. Rev. A 2017, 96, 013817. [Google Scholar] [CrossRef]
- Ivanov, P.A. Enhanced two-parameter phase-space-displacement estimation close to a dissipative phase transition. Phys. Rev. A 2020, 102, 052611. [Google Scholar] [CrossRef]
- Weedbrook, C.; Pirandola, S.; García-Patrón, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621. [Google Scholar] [CrossRef]
- Nichols, R.; Liuzzo-Scorpo, P.; Knott, P.A.; Adesso, G. Multiparameter Gaussian quantum metrology. Phys. Rev. A 2018, 98, 012114. [Google Scholar] [CrossRef]
- Safranek, D. Estimation of Gaussian quantum states. J. Phys. A 2019, 52, 035304. [Google Scholar] [CrossRef]
- Leibfried, D.; Blatt, R.; Monroe, C.; Wineland, D. Quantum dynamics of single trapped ions. Rev. Mod. Phys. 2003, 75, 281. [Google Scholar] [CrossRef]
- Porras, D.; Cirac, J.I. Bose-Einstein Condensation and Strong-Correlation Behavior of Phonons in Ion Traps. Phys. Rev. Lett. 2004, 93, 263602. [Google Scholar] [CrossRef]
- Ivanov, P.A.; Ivanov, S.S.; Vitanov, N.V.; Mering, A.; Fleischhauer, M.; Singer, K. Simulation of a quantum phase transition of polaritons with trapped ions. Phys. Rev. A 2009, 80, 060301(R). [Google Scholar] [CrossRef]
- Hwang, M.-J.; Rabl, P.; Plenio, M.B. Dissipative phase transition in the open quantum Rabi model. Phys. Rev. A 2018, 97, 013825. [Google Scholar] [CrossRef]
- Lemmer, A.; Cormick, C.; Tamascelli, D.; Schaetz, T.; Huelga, S.F.; Plenio, M.B. A trapped-ion simulator for spin-boson models with structured environments. New J. Phys. 2018, 20, 073002. [Google Scholar] [CrossRef]
- Porras, D.; Garcia-Ripoll, J.J. Shaping an itinerant Quantum Field into a Multimode Squeezed Vacuum by Dissipation. Phys. Rev. Lett. 2012, 108, 043602. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, P.A. Enhanced Parameter Estimation with Periodically Driven Quantum Probe. Entropy 2021, 23, 1333. https://doi.org/10.3390/e23101333
Ivanov PA. Enhanced Parameter Estimation with Periodically Driven Quantum Probe. Entropy. 2021; 23(10):1333. https://doi.org/10.3390/e23101333
Chicago/Turabian StyleIvanov, Peter A. 2021. "Enhanced Parameter Estimation with Periodically Driven Quantum Probe" Entropy 23, no. 10: 1333. https://doi.org/10.3390/e23101333
APA StyleIvanov, P. A. (2021). Enhanced Parameter Estimation with Periodically Driven Quantum Probe. Entropy, 23(10), 1333. https://doi.org/10.3390/e23101333