Adaptive Surface Modeling of Soil Properties in Complex Landforms
Abstract
:1. Introduction
2. Method
2.1. Study Area and Datasets
2.2. Methods for Spatial Interpolation
2.2.1. Inverse Distance Weighting
2.2.2. Ordinary Kriging
2.2.3. Base Interpolation Models
2.3. Method for Adaptive Partitioning
2.4. Assessment of Performance
3. Results
3.1. Parameter Specification and Selection of Secondary Variables
3.2. ANOVA Analysis of Soil Properties for Different Secondary Variables
3.3. ASM-SP
3.3.1. Construction of Base Interpolation Models
3.3.2. Adaptive Partitioning of Interpolation Surfaces
3.3.3. Integration of Interpolation Surfaces
3.4. Comparison of Interpolation Performance
3.5. Comparison of Interpolated Maps
4. Discussion
4.1. Performance of Multi-Model Integration for Reducing Predictive Error
- (1)
- The sample data used to predict soil properties cannot usually provide the complete information for individual interpolation models, requiring assumptions to be made about different conditions. In other words, it is difficult for a single interpolation model to accurately describe the spatial variance of soil properties across the whole study area. For instance, using sampling data for one soil property, a number of interpolation models might share similar interpolation accuracies, with no optimal interpolation. The accuracy of spatial interpolation of soil properties can be well improved by effectively combining the advantages of multiple base interpolation models.
- (2)
- The sample data used to predict soil properties often cannot accurately express patterns of spatial variation. However, the integration of multiple models is able to provide a better approximation than use of a single model. For example, the patterns of spatial variance in soil K+ in dry farmland differ greatly in areas with chernozem and clay soils. Therefore, if land use type is the only secondary variable used in the spatial interpolation of soil K+ (e.g., in OK-Landuse), it is usually impossible to achieve a relatively high prediction accuracy. An effective solution is to integrate a series of spatial interpolation methods (e.g., OK-Landuse, OK-Soil, OK-Geology, etc.) to realize simultaneous approximation.
4.2. Effectiveness of Secondary Variables for Spatial Interpolation
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shi, W.J.; Liu, J.Y.; Du, Z.P.; Yue, T.X. High Accuracy Surface Modeling of Soil Properties Based on Geographic Information. Acta Geogr. Sin. 2011, 66, 1574–1581. [Google Scholar]
- Shi, D.; Lark, R. A New Branch of Soil Science-Pedometrics’ Its Origin and Development. Acta Pedol. Sin. 2007, 44, 919–924. [Google Scholar]
- Li, J.; Heap, A.D.; Potter, A.; Daniell, J.J. Application of Machine Learning Methods to Spatial Interpolation of Environmental Variables. Environ. Model. Softw. 2011, 26, 1647–1659. [Google Scholar] [CrossRef]
- Yue, T.X.; Wang, S.H. Adjustment Computation of Hasm: A High-Accuracy and High-Speed Method. Int. J. Geogr. Inf. Sci. 2010, 24, 1725–1743. [Google Scholar] [CrossRef]
- Wang, J.F.; Ge, Y.; Li, L.F.; Meng, B.; Wu, J.L.; Bai, Y.C. Spatiotemporal Data Analysis in Geography. Acta Geogr. Sin. 2014, 69, 1326–1345. [Google Scholar]
- Goovaerts, P. A Coherent Geostatistical Approach for Combining Choropleth Map and Field Data in the Spatial Interpolation of Soil Properties. Eur. J. Soil Sci. 2011, 62, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.L.; Juang, K.W.; Lee, D.Y. Interpolating Soil Properties Using Kriging Combined with Categorical Information of Soil Maps. Soil Sci. Soc. Am. J. 2006, 70, 1200–1209. [Google Scholar] [CrossRef]
- Gilardi, N. Machine Learning for Spatial Data Analysis. Ph.D. Thesis, University of Lausanne and Dalle Molle Institute of Perceptual Artificial Intelligence, Lausanne, Switzerland, 2002. [Google Scholar]
- Rigol, J.P.; Jarvis, C.H.; Stuart, N. Artificial Neural Networks as a Tool for Spatial Interpolation. Int. J. Geogr. Inf. Sci. 2001, 15, 323–343. [Google Scholar] [CrossRef]
- Liu, W.; Du, P.J.; Zhao, Z.W.; Zhang, L.P. An Adaptive Weighting Algorithm for Interpolating the Soil Potassium Content. Sci. Rep. 2016, 6, 23889. [Google Scholar] [CrossRef] [PubMed]
- Bashir, B.; Fouli, H. Studying the Spatial Distribution of Maximum Monthly Rainfall in Selected Regions of Saudi Arabia Using Geographic Information Systems. Arab. J. Geosci. 2015, 8, 1–15. [Google Scholar] [CrossRef]
- Borůvka, L.; Mládková, L.; Penížek, V.; Drábek, O.; Vašát, R. Forest Soil Acidification Assessment Using Principal Component Analysis and Geostatistics. Geoderma 2007, 140, 374–382. [Google Scholar] [CrossRef]
- Florinsky, I.; Eilers, R.G.; Manning, G.; Fuller, L. Prediction of Soil Properties by Digital Terrain Modelling. Environ. Model. Softw. 2002, 17, 295–311. [Google Scholar] [CrossRef]
- Kuriakose, S.L.; Devkota, S.; Rossiter, D.; Jetten, V. Prediction of Soil Depth Using Environmental Variables in An Anthropogenic Landscape, a Case Study in the Western Ghats of Kerala, India. Catena 2009, 79, 27–38. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.; Shi, X.; Zhang, K.; Zhang, J. Spatial Interpolation Method Based on Integrated Rbf Neural Networks for Estimating Heavy Metals in Soil of a Mountain Region. J. Southeast Univ. 2015, 31, 38–45. [Google Scholar]
- Minasny, B.; Mcbratney, A.B. Spatial Prediction of Soil Properties Using Eblup with the Matérn Covariance Function. Geoderma 2007, 140, 324–336. [Google Scholar] [CrossRef]
- Montealegre, A.; Lamelas, M.; Riva, J. Interpolation Routines Assessment in Als-Derived Digital Elevation Models for Forestry Applications. Remote Sens. 2015, 7, 8631–8654. [Google Scholar] [CrossRef]
- Yang, S.H.; Zhang, H.T.; Guo, L.; Ren, Y. Spatial Interpolation of Soil Organic Matter Using Regression Kriging and Geographically Weighted Regression Kriging. Chin. J. Appl. Ecol. 2015, 26, 1649–1656. [Google Scholar]
- Liu, W.; Du, P.J.; Wang, D.C. Ensemble Learning for Spatial Interpolation of Soil Potassium Content Based on Environmental Information. PLoS ONE 2015, 10, e0124383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lu, L.; Liu, Y.; Liu, W. Spatial Sampling Strategies for the Effect of Interpolation Accuracy. ISPRS Int. J. Geo-Inf. 2015, 4, 2742–2768. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis. Part 3—Chemical Methods; Soil Science Society of America: Fitchburg, WI, USA, 2009. [Google Scholar]
- Burrough, P.A. Principles of Geographical Information Systems for Land Resources Assessment. Geocarto Int. 1987, 1, 102. [Google Scholar] [CrossRef]
- Mosammam, A. Geostatistics: Modeling Spatial Uncertainty. J. Appl. Stat. 2013, 40, 923. [Google Scholar] [CrossRef]
- Asli, M.; Marcotte, D. Comparison of Approaches to Spatial Estimation in a Bivariate Context. Math. Geol. 1995, 27, 641–658. [Google Scholar] [CrossRef]
- Odeh, I.O.; Mcbratney, A.; Chittleborough, D. Further Results on Prediction of Soil Properties From Terrain Attributes: Heterotopic Cokriging and Regression-Kriging. Geoderma 1995, 67, 215–226. [Google Scholar] [CrossRef]
- Hengl, T.; Heuvelink, G.; Stein, A. A Generic Framework for Spatial Prediction of Soil Variables Based on Regression-Kriging. Geoderma 2004, 120, 75–93. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Karlen, D.L. Spatial Analysis of Soil Fertility Parameters. Precis. Agric. 1999, 1, 5–14. [Google Scholar] [CrossRef]
- Long, J.; Zhang, L.M.; Zhou, B.Q.; Mao, Y.L.; Qiu, L.X.; Xing, S.H. Spatial Interpolatin of Soil Organic Matter in Farmlands in Areas Complex in Landform. Acta Pedol. Sin. 2014, 51, 81–93. [Google Scholar]
- Penížek, V.; Borůvka, L. Soil Depth Prediction Supported by Primary Terrain Attributes: A Comparison of Methods. Plant Soil Environ. 2006, 52, 424–430. [Google Scholar]
- Triantafilis, J.; Odeh, I.; Mcbratney, A. Five geostatistical models to predict soil salinity from Electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J. 2001, 65, 869–878. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Sun, Z.Y.; Chen, J. Analysis and Comparison in Arithmetic for Kriging Interpolation and Sequential Gaussian Conditional Simulation. J. Geo-Inf. Sci. 2010, 6, 767–776. [Google Scholar] [CrossRef]
- Li, Q.Q.; Wang, C.Q.; Yue, T.X.; Li, B.; Zhang, X.; Gao, X.S.; Zhang, Y. Prediction of Distribution of Soil Organic Matter Based on Qualitative and Antitative Auxiliary Variables: A Case Study in Santai County in Sichuan Province. Progress Geogr. 2014, 33, 259–269. [Google Scholar]
- Qiu, L.F.; Yang, C.; Lin, F.F.; Yang, N.; Zhen, X.H. Spatial Pattern of Soil Fertility in Bashan Tea Garden: A Prediction Based on Environmental Auxiliary Variables. Chin. J. Appl. Ecol. 2010, 21, 3099–3104. [Google Scholar]
- Wen, W.; Zhou, B.T.; Wang, Y.F.; Huang, Y. Soil Organic Carbon Interpolation Based on Auxiliary Environmental Covariates: A Case Study At Small Watershed Scale in Loess Hilly Region. Acta Ecol. Sin. 2013, 33, 6389–6397. [Google Scholar] [CrossRef]
- Hu, K.; Li, H.; Li, B.; Huang, Y. Spatial and Temporal Patterns of Soil Organic Matter in the Urban–Rural Transition Zone of Beijing. Geoderma 2007, 141, 302–310. [Google Scholar] [CrossRef]
- Shi, W.; Liu, J.; Du, Z.; Stein, A.; Yue, T. Surface Modelling of Soil Properties Based on Land Use Information. Geoderma 2011, 162, 347–357. [Google Scholar] [CrossRef]
Secondary Variable | Subtype | Number | Mean | Standard Error | Area/km2 | Area Proportion/% |
---|---|---|---|---|---|---|
Soil | Alpine meadow soil | 32 | 1.98 | 0.14 | 420.47 | 20.81 |
Chestnut soil | 54 | 2.01 | 0.18 | 1360.14 | 67.31 | |
Flow sandy soil | 10 | 1.72 | 0.12 | 144.76 | 7.16 | |
Meadow marsh soil | 6 | 1.84 | 0.03 | 31.9 | 1.58 | |
Semi-fixed sandy soil | 8 | 1.50 | 0.07 | 63.4 | 3.14 | |
Geology | Alluvial terrace | 8 | 2.04 | 0.14 | 71.25 | 3.53 |
Denudate high terrace | 10 | 2.15 | 0.07 | 266.73 | 13.22 | |
Diluvial plain | 13 | 2.10 | 0.13 | 515.24 | 25.53 | |
Hilly | 3 | 2.14 | 0.05 | 3.76 | 0.19 | |
Lacustrine plain | 20 | 1.94 | 0.17 | 333.33 | 16.52 | |
Lake beach | 5 | 1.84 | 0.09 | 143.99 | 7.14 | |
Large rolling alpine | 10 | 1.89 | 0.12 | 132.64 | 6.57 | |
Middle rolling alpine | 4 | 1.91 | 0.10 | 5.63 | 0.28 | |
Sand dune | 14 | 1.63 | 0.14 | 193.15 | 9.57 | |
Small rolling alpine | 14 | 2.05 | 0.12 | 287.08 | 14.23 | |
Valley plain | 9 | 1.96 | 0.08 | 65.22 | 3.23 | |
Land use | Cropland | 10 | 2.14 | 0.08 | 77.16 | 3.83 |
Grassland | 41 | 1.99 | 0.13 | 1172.65 | 58.17 | |
Meadowland | 25 | 2.02 | 0.12 | 417.44 | 20.71 | |
Potential arable land | 16 | 1.88 | 0.14 | 229.32 | 11.38 | |
Scrubland | 0 | 1.91 | 0.22 | 1.18 | 0.05 | |
Swamp meadowland | 5 | 1.84 | 0.04 | 32.09 | 1.59 | |
Unused land | 13 | 1.64 | 0.09 | 86.43 | 4.29 | |
Grassland | Achnatherum splendens | 37 | 1.93 | 0.17 | 719.58 | 35.59 |
Artemisaarenariadc | 2 | 1.49 | 0.07 | 31.83 | 1.57 | |
Blysmus sinocompressus | 5 | 1.93 | 0.14 | 30.00 | 1.48 | |
Bush cinqefoil | 18 | 2.06 | 0.14 | 517.19 | 25.58 | |
Coarse beak carex | 2 | 1.86 | 0.04 | 20.10 | 0.99 | |
Elymus nutans | 3 | 1.73 | 0.08 | 18.49 | 0.91 | |
Ephedra | 1 | 1.50 | 0 | 2.49 | 0.12 | |
Gravel | 4 | 1.68 | 0.10 | 135.38 | 6.70 | |
Iris ensata thunb | 1 | 1.96 | 0 | 34.47 | 1.70 | |
Leymus | 6 | 1.94 | 0.27 | 28.95 | 1.43 | |
Kobresia humilis | 4 | 2.02 | 0.08 | 28.30 | 1.40 | |
Koeleria tibetica | 4 | 1.80 | 0.10 | 24.45 | 1.21 | |
Kobresia capillifolia | 7 | 2.05 | 0.08 | 157.90 | 7.81 | |
Kobresia myosuroides | 3 | 2.16 | 0.06 | 82.99 | 4.11 | |
Salix oritrepha | 2 | 2.02 | 0.05 | 16.33 | 0.81 | |
Serpent grass | 2 | 1.94 | 0.08 | 4.29 | 0.21 | |
Stipa krylovii | 3 | 1.82 | 0.05 | 51.77 | 2.56 | |
Stipa purpurea | 5 | 2.14 | 0.07 | 111.51 | 5.52 | |
Water bai zhi | 1 | 2.08 | 0 | 5.64 | 0.28 |
Parameter | Residue of OK_Landuse | Residue of OK_Soil | Residue of OK_Geology | OK |
---|---|---|---|---|
Model | K-Bessel | K-Bessel | Exponential | Exponential |
Range/10 km | 1.1984 | 1.2169 | 1.1984 | 2.5058 |
Nugget (N) | 0.0204 | 0.03124 | 0.1866 | 0.2483 |
Sill (S) | 0.4842 | 0.5043 | 0.4783 | 0.6012 |
N/S | 0.0421 | 0.0619 | 0.3901 | 0.4130 |
Geo-Factors | Soil Property | Sources of Variance | Degree of Freedom | Sum of Variance | Mean Variance | F Value | p Value |
---|---|---|---|---|---|---|---|
Geology type | Soil K+ | In-group | 9 | 1.033 | 0.115 | 2.856 | 0.005 |
Between groups | 101 | 4.060 | 0.04 | ||||
Total | 110 | 5.093 | |||||
Soil type | Soil K+ | In-group | 4 | 0.722 | 0.181 | 4.378 | 0.003 |
Between groups | 106 | 4.371 | 0.041 | ||||
Total | 110 | 5.093 | |||||
Land use type | Soil K+ | In-group | 4 | 0.462 | 0.116 | 2.645 | 0.008 |
Between groups | 106 | 4.631 | 0.044 | ||||
Total | 110 | 5.093 | |||||
Grassland type | Soil K+ | In-group | 16 | 0.934 | 0.058 | 1.319 | 0.202 |
Between groups | 94 | 4.159 | 0.044 | ||||
Total | 110 | 5.093 |
Evaluation Index | OK-Landuse | OK-Geology | OK-Soil | IDW | OK | ASM-SP |
---|---|---|---|---|---|---|
ME | 0.0030 | −0.0037 | 0.0024 | 0.0072 | 0.0093 | 0.0017 |
MAE | 0.0294 | 0.0301 | 0.0236 | 0.0362 | 0.0314 | 0.0072 |
RMSE | 0.0742 | 0.0672 | 0.0815 | 0.1637 | 0.1067 | 0.0586 |
MRE | 95.91% | 96.57% | 95.87% | 96.04% | 95.34% | 89.69% |
AC | 0.9047 | 0.9186 | 0.9242 | 0.8756 | 0.8976 | 0.9903 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Zhang, H.-R.; Yan, D.-P.; Wang, S.-L. Adaptive Surface Modeling of Soil Properties in Complex Landforms. ISPRS Int. J. Geo-Inf. 2017, 6, 178. https://doi.org/10.3390/ijgi6060178
Liu W, Zhang H-R, Yan D-P, Wang S-L. Adaptive Surface Modeling of Soil Properties in Complex Landforms. ISPRS International Journal of Geo-Information. 2017; 6(6):178. https://doi.org/10.3390/ijgi6060178
Chicago/Turabian StyleLiu, Wei, Hai-Rong Zhang, Da-Peng Yan, and Sheng-Li Wang. 2017. "Adaptive Surface Modeling of Soil Properties in Complex Landforms" ISPRS International Journal of Geo-Information 6, no. 6: 178. https://doi.org/10.3390/ijgi6060178
APA StyleLiu, W., Zhang, H.-R., Yan, D.-P., & Wang, S.-L. (2017). Adaptive Surface Modeling of Soil Properties in Complex Landforms. ISPRS International Journal of Geo-Information, 6(6), 178. https://doi.org/10.3390/ijgi6060178