Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data
Abstract
:1. Introduction
2. Study Area and Data Acquisition
2.1. Study Area
2.2. GRACE Data
2.3. ICESat Data
2.4. GIA
2.5. Hydrological Model
3. Method
3.1. Water Storage Change from GRACE
3.2. Water Level Changes of Lakes and Elevation Changes of Glaciers from ICESat
4. Results and Analysis
4.1. Secular and Seasonal Changes of Water Storage from GRACE
4.1.1. Secular Variations
4.1.2. Signal Leakage
4.1.3. Seasonal Changes
4.2. Water Level and Glacier Changes from ICESat
4.2.1. Water Level Changes of Major Lakes
4.2.2. Elevation Changes of Major Glaciers
5. Summary and Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Tapponnier, P.; Zhiqin, X.; Roger, F.; Meyer, B.; Arnaud, N.; Wittlinger, G.; Jingsui, Y. Oblique stepwise rise and growth of the Tibet Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef]
- Dewey, J.F.; Shackleton, R.M.; Chengfa, C.; Yiyin, S. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. Lond. A 1988, 327, 379–413. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Kang, S.; Lei, Y. Increased mass over the Tibetan Plateau: From lakes or glaciers? Geophys. Res. Lett. 2013, 40, 2125–2130. [Google Scholar] [CrossRef] [Green Version]
- Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999. [Google Scholar] [CrossRef] [PubMed]
- Rodell, M.; Famiglietti, J.S. Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res. 1999, 35, 2705–2723. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Jie, Z.; Yun, L. Climate change indicated by the recent change of inland lakes in Northwest China. J. Glaciol. Geocryol. 2003, 2, 16. [Google Scholar]
- Cheng, G.; Wu, T. Responses of permafrost to climate change and their environmental significance, Qinghai-Tibet Plateau. J. Geophys. Res. Earth Surf. 2007, 112, F2. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663. [Google Scholar] [CrossRef]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Clim. 2000, 20, 1729–1742. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, S.; Yu, S.; Yang, D.; Zhang, L. Climate warming and growth of high-elevation inland lakes on the Tibetan Plateau. Glob. Planet. Chang. 2009, 67, 209–217. [Google Scholar] [CrossRef]
- Ye, Q.H.; Yao, T.D.; Naruse, R.J. Glacier and lake variations in the Mapam Yumco basin, Western Himalayas, Tibetan Plateau, from 1974 to 2003 using remote sensing and GIS technologies. J. Glaciol. 2008, 54, 933–935. [Google Scholar] [CrossRef]
- Xiangde, X.; Shiyan, T.; Jizhi, W.; Lianshou, C.; Li, Z.; Xiurong, W. The relationship between water vapor transport features of Tibetan Plateau-monsoon “large triangle” affecting region and drought-flood abnormality of China. Acta Meteorol. Sin. 2002, 60, 257–266. [Google Scholar]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-wide glacier mass balances over the Pamir–Karakoram-Himalaya during 1999–2011. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef]
- Li, Z.; Sun, W.; Zeng, Q. Measurements of glacier variation in the Tibetan Plateau using Landsat data. Remote Sens. Environ. 1998, 63, 258–264. [Google Scholar] [CrossRef]
- Junfeng, W.; Shiyin, L.; Wanqin, G.; Xiaojun, Y.; Junli, X.; Weijia, B.; Zongli, J. Surface-area changes of glaciers in the Tibetan Plateau interior area since the 1970s using recent Landsat images and historical maps. Ann. Glaciol. 2014, 55, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Ligtenberg, S.R. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef]
- Qinghua, Y.E.; Zong, J.; Tian, L.; Graham, C.J.; Song, C.; Guo, W. Glacier changes on the Tibetan plateau derived from landsat imagery: mid-1970s—2000–13. J. Glaciol. 2017, 63, 273–287. [Google Scholar]
- Song, C.; Bo, H.; Linghong, K. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Liu, W.; Guo, Q.H.; Wang, Y.X. Temporal-spatial climate change in the last 35 years in Tibet and its geo-environmental consequences. Environ. Geol. 2008, 54, 1747–1754. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Rem. Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Kääb, A.; Berthier, E.; Nuth, C.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495. [Google Scholar] [CrossRef]
- Jacob, T.; Wahr, J.; Pfeffer, W.T.; Swenson, S. Recent contributions of glaciers and ice caps to sea level rise. Nature 2012, 482, 514. [Google Scholar] [CrossRef]
- Song, C.; Ke, L.; Huang, B.; Richards, K.S. Can mountain glacier melting explains the GRACE-observed mass loss in the southeast Tibetan Plateau: From a climate perspective? Glob. Planet. Chang. 2015, 124, 1–9. [Google Scholar] [CrossRef]
- Matsuo, K.; Heki, K. Time-variable ice loss in Asian high mountains from satellite gravimetry. Earth Planet. Sci. Lett. 2010, 290, 30–36. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Schutz, B.; Abdalati, W.; Abshire, J.; Bentley, C.; Brenner, A.; Herring, T. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodynam. 2002, 34, 405–445. [Google Scholar] [CrossRef]
- Wan, W.; Long, D.; Hong, Y.; Ma, Y.; Yuan, Y.; Xiao, P.; Gu, X. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Sci. Data 2016, 3, 160039. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Jiang, Z. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Wang, Q.; Yi, S.; Sun, W. The changing pattern of lake and its contribution to increased mass in the Tibetan Plateau derived from GRACE and ICESat data. Geophys. J. Int. 2016, 207, 528–541. [Google Scholar] [CrossRef]
- Yi, S.; Sun, W. Evaluation of glacier changes in high-mountain Asia based on 10 year GRACE RL05 models. J. Geophys. Res. Solid Earth 2014, 119, 2504–2517. [Google Scholar] [CrossRef] [Green Version]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef] [Green Version]
- Bian, D.; Yang, Z.G.; Li, L.; Chu, D.; Zhuo, G.; Bianba, C.R.; Zhaxi, Y.; Dong, Y. The response of lake area change to climate variations in north Tibetan Plateau during last 30 years. Acta Geol. Sin. 2006, 61, 510–518. [Google Scholar]
- Swenson, S.; Chambers, D.; Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. Solid Earth 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Cheng, M.; Tapley, B.D.; Ries, J.C. Deceleration in the Earth’s oblateness. J. Geophys. Res. Solid Earth 2013, 118, 740–747. [Google Scholar] [CrossRef]
- Swenson, S.; Wahr, J. Pos-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D.; Blankenship, D.; Young, D. Antarctic regional ice loss rates from GRACE. Earth Planet. Sci. Lett. 2008, 266, 140–148. [Google Scholar] [CrossRef]
- Wahr, J.; Molenaar, M.; Bryan, F. Time variability of the Earth’s gravity field: Hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 1998, 103, 30205–30229. [Google Scholar] [CrossRef]
- Zwally, H.J.; Schutz, R.; Hancock, D.; Dimarzio, J. GLAS/ICEsat L2 Global Land Surface Altimetry Data (HDF5), Version 34; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2014. [CrossRef]
- Geruo, A.; Wahr, J.; Zhong, S. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophys. J. Int. 2013, 192, 557–572. [Google Scholar]
- Peltier, W.R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 2004, 32, 111–149. [Google Scholar] [CrossRef]
- Jin, S.; Zou, F. Re-estimation of glacier mass loss in Greenland from GRACE with correction of land-ocean leakage effects. Glob. Planet. Chang. 2015, 135, 170–178. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Seo, K.W. Optimized smoothing of Gravity Recovery and Climate Experiment (GRACE) time-variable gravity observations. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Schrama, E.J.O.; Wouters, B. Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Cheng, H.; Liu, L. Using nonlinear programming to correct leakage and estimate mass change from GRACE observation and its application to Antarctica. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Baur, O.; Kuhn, M.; Featherstone, W.E. GRACE-derived ice-mass variations over Greenland by accounting for leakage effects. J. Geophys. Res. 2009, 114. [Google Scholar] [CrossRef]
- Bonin, J.; Chambers, D. Uncertainty estimates of a GRACE inversion modelling technique over Greenland using a simulation. Geophys. J. Int. 2013, 194, 212–229. [Google Scholar] [CrossRef] [Green Version]
- Chambers, D.P. Calculating trends from GRACE in the presence of large changes in continental ice storage and ocean mass. Geophys. J. Int. 2009, 176, 415–419. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Wilson, C.R.; Tapley, B.D. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nat. Geosci. 2013, 6, 549–552. [Google Scholar] [CrossRef]
- Moholdt, G.; Nuth, C.; Hagen, J.O.; Kohler, J. Recent elevation changes of Svalbard glaciers derived from icesat laser altimetry. Remote Sens. Environ. 2010, 114, 2756–2767. [Google Scholar] [CrossRef]
- Long, D.; Chen, X.; Scanlon, B.R.; Wada, Y.; Hong, Y.; Singh, V.P.; Yang, W. Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Sci. Rep. 2016, 6, 24398. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 2009, 36, 18. [Google Scholar] [CrossRef]
- Tandong, Y.; Jianchen, P.; Anxin, L.; Youqing, W.; Wusheng, Y. Recent Glacial Retreat and Its Impact on Hydrological Processes on the Tibetan Plateau, China, and Surrounding Regions. Arct. Antarct. Alp. Res. 2007, 39, 642–650. [Google Scholar] [Green Version]
- Xiang, L.; Wang, H.; Steffen, H.; Wu, P.; Jia, L.; Jiang, L.; Shen, Q. Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth Planet. Sci. Lett. 2016, 449, 228–239. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.S.; Wang, Q.Q. A discussion of groundwater recharge source in arid areas of North China. Water Res. Prot. 2012, 28, 5–8. [Google Scholar]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Xu, H.Y.; Sun, Y.L.; Zhang, D.S.; Yang, Z.P. Lake-level change and water balance analysis at lake qinghai, west china during recent decades. Water Resour. Manag. 2007, 21, 1505–1516. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Yang, K.; Bird, B.W.; Tian, L.; Zhang, X.; Wang, L. An integrated investigation of lake storage and water level changes in the Paiku Co basin, central Himalayas. J. Hydrol. 2018, 562, 599–608. [Google Scholar] [CrossRef]
- Zhang, G.; Xie, H.; Duan, S.; Tian, M.; Yi, D. Water level variation of Lake Qinghai from satellite and in situ measurements under climate change. J. Appl. Remote Sens. 2011, 5, 053532. [Google Scholar] [CrossRef]
- Wang, B.; Liu, J.; Kim, H.J.; Webster, P.J.; Yim, S.Y. Recent changes of the global monsoon precipitation (1979–2008). Clim. Dyn. 2012, 39, 1123–1135. [Google Scholar] [CrossRef]
- Yi, S.; Song, C.; Wang, Q.; Wang, L.; Heki, K.; Sun, W. The potential of GRACE gravimetry to detect the heavy rainfall-induced impoundment of a small reservoir in the upper Yellow River. Water Resour. Res. 2017, 53, 6562–6578. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, C.; Thomas, M.; Kaban, M.K.; Güntner, A.; Du, J. Increased water storage of Lake Qinghai during 2004–2012 from GRACE data, hydrological models, radar altimetry and in situ measurements. Geophys. J. Int. 2017, 212, 679–693. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Li, J.; Zhang, Z. Reducing leakage error in GRACE-observed long-term ice mass change: A case study in West Antarctica. J. Geodesy 2015, 89, 925–940. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Jin, S.G. Estimate of glacial isostatic adjustment uplift rate in the Tibetan Plateau from GRACE and GIA models. J. Geodyn. 2013, 72, 59–66. [Google Scholar] [CrossRef]
Year | Precipitation | Year | Precipitation | Year | Precipitation |
---|---|---|---|---|---|
2002 | 23.5709 * | 2007 | 69.6933 | 2012 | 56.4865 ** |
2003 | 69.8019 | 2008 | 67.9184 | 2013 | 68.2526 |
2004 | 69.7366 | 2009 | 61.7370 | 2014 | 66.4706 |
2005 | 67.9176 | 2010 | 82.6796 | 2015 | 63.9677 |
2006 | 60.2248 | 2011 | 67.2833 | 2016 | 66.3700 |
Lake | Area (km2) (in 2003) | Water Level (m) (in 2003) | Central Location (°) [Lat,Lon] | Water Level Change Rate from ICESat (m/yr) | |
---|---|---|---|---|---|
1 | Qinghai | 4064.81 | 3193.06 | [36.8,100] | 0.12 |
2 | Seling Co | 2124.46 | 4539.37 | [34.8,88.8] | 0.62 |
3 | Nam Co | 1987.75 | 472.74 | [30.5,90.8] | 0.21 |
4 | Zhari NamCo | 970.71 | 4612.72 | [30.9,85.7] | 0.06 |
5 | Ayaqqum | 718.52 | 3878.89 | [37.5,88.9] | 0.13 |
6 | Yumzhog YumCo | 664.14 | 4438.94 | [42.0,87.0] | −0.38 |
7 | Pangong Co | 630.32 | 4244.23 | [33.8,79.0] | 0.07 |
8 | Har | 587.3 | 4076.75 | [38.5,97.5] | 0.15 |
9 | Gyaring | 529.76 | 4291.77 | [34.9,97.2] | 0.22 |
10 | Nganglha Co | 489.73 | 4715.48 | [31.5,83.0] | 0.03 |
11 | Taruo | 478.21 | 4566.78 | [31.2,84.1] | 0.38 |
12 | Mapum YumCo | 405.62 | 4585.95 | [30.7,81.5] | −0.06 |
13 | CoNa | 400 | 4596.83 | [32.0,91.4] | −0.18 |
14 | Puma YumCo | 288.86 | 5010.3 | [28.5,90.2] | −0.03 |
15 | Paiku Co | 270 | 4578.61 | [28.9,85.5] | −0.06 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, F.; Tenzer, R.; Jin, S. Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sens. 2019, 11, 1103. https://doi.org/10.3390/rs11091103
Zou F, Tenzer R, Jin S. Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sensing. 2019; 11(9):1103. https://doi.org/10.3390/rs11091103
Chicago/Turabian StyleZou, Fang, Robert Tenzer, and Shuanggen Jin. 2019. "Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data" Remote Sensing 11, no. 9: 1103. https://doi.org/10.3390/rs11091103
APA StyleZou, F., Tenzer, R., & Jin, S. (2019). Water Storage Variations in Tibet from GRACE, ICESat, and Hydrological Data. Remote Sensing, 11(9), 1103. https://doi.org/10.3390/rs11091103