A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods for Image Classification and Validation
2.4. Land-Use Prediction Using a CA-ANN Model and Sensitivity Analysis
2.4.1. CA-ANN Model
2.4.2. Sensitivity Analysis
2.5. Ecosystem Health Assessment Framework
2.6. Sensitivity Analysis of Ecosystem Health Model Using Morris Method
3. Results
3.1. LULC Mapping and Dynamics
3.2. Future Prediction of LULC
3.2.1. LULC Prediction
3.2.2. Sensitivity Analysis, and Correlation Analysis
3.3. Ecosystem Health Conditions Modeling
3.3.1. Changes in EH Indicators
3.3.2. Ecosystem Health Conditions Models
3.3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Abbreviations
VORS | Vigor: organization, resilience, ecosystem system service |
SVM | Support vector machine |
LULC | Land use land cover |
ANN-CA | Artificial neural network-cellular automata |
RF | Random forest |
CART | Classification and regression tree |
Probability distribution function | |
EH | Ecosystem health |
UEH | Urban ecosystem health |
GDP | Gross domestic product |
KSA | Kingdom of Saudi Arabia |
USGS | United States Geological Survey |
RTC | Radiometrically terrain corrected |
DEM | Digital elevation model |
NASA | National Aeronautics and Space Administration |
MLA | Machine learning algorithm |
RBF | Radial basis function |
PH | Physical health |
NDVI | Normalized differentiation vegetation index |
SHDI | Shannon’s Diversity Index |
PD | Patch Density |
AWMPFD | Area-Weighted Mean Patch Fractal Dimension |
IIC | Integral Index of Connectivity |
CONTAG | Contagion Index |
MOAT | Morris one-at-a-time method |
OAT | One-at-a-time method |
References
- Luo, Q.; Zhou, J.; Li, Z.; Yu, B. Spatial differences of ecosystem services and their driving factors: A comparation analysis among three urban agglomerations in China’s Yangtze River Economic Belt. Sci. Total Environ. 2020, 725, 138452. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Guo, L.; Sang, W. Impact of Fast Urbanization on Ecosystem Health in Mountainous Regions of Southwest China. Int. J. Environ. Res. Public Health 2020, 17, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, N.; Feng, C.C.; Han, R.; Guo, L. Impact of Urbanization on Ecosystem Health: A Case Study in Zhuhai, China. Int. J. Environ. Res. Public Health 2019, 16, 4717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.; Zhu, J. Changes in urban air quality during urbanization in China. J. Clean. Prod. 2018, 188, 312–321. [Google Scholar] [CrossRef]
- Huang, S.; Wang, M.; Wu, J.; Li, Q.; Yang, J.; Guo, L.; Wang, J.; Xu, Z. The exploration and practice on soil environmental protection in the process of rapid urbanization of the megacity Shanghai. In Twenty Years of Research and Development on Soil Pollution and Remediation in China; Springer: Singapore, 2018; pp. 133–147. ISBN 9789811060298. [Google Scholar]
- Xiao, R.; Liu, Y.; Fei, X.; Yu, W.; Zhang, Z.; Meng, Q. Ecosystem health assessment: A comprehensive and detailed analysis of the case study in coastal metropolitan region, eastern China. Ecol. Indic. 2019, 98, 363–376. [Google Scholar] [CrossRef]
- Costanza, R. Ecosystem health and ecological engineering. Ecol. Eng. 2012, 45, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Rapport, D.J. What constitutes ecosystem health? Perspect. Biol. Med. 1989, 33, 120–132. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, Z.; Shi, H.; Han, F.; Liu, Q.; Qi, J.; Lu, Y. Ecosystem Health Assessment of World Natural Heritage Sites Based on Remote Sensing and Field Sampling Verification: Bayanbulak as Case Study. Sustainability 2020, 12, 2610. [Google Scholar] [CrossRef] [Green Version]
- Ekumah, B.; Armah, F.A.; Afrifa, E.K.A.; Aheto, D.W.; Odoi, J.O.; Afitiri, A.R. Geospatial assessment of ecosystem health of coastal urban wetlands in Ghana. Ocean Coast. Manag. 2020, 193, 105226. [Google Scholar] [CrossRef]
- Kang, P.; Chen, W.; Hou, Y.; Li, Y. Linking ecosystem services and ecosystem health to ecological risk assessment: A case study of the Beijing-Tianjin-Hebei urban agglomeration. Sci. Total Environ. 2018, 636, 1442–1454. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, D. Assessing ecosystem health. Trends Ecol. Evol. 1999, 14, 69. [Google Scholar] [CrossRef]
- Liao, C.; Yue, Y.; Wang, K.; Fensholt, R.; Tong, X.; Brandt, M. Ecological restoration enhances ecosystem health in the karst regions of southwest China. Ecol. Indic. 2018, 90, 416–425. [Google Scholar] [CrossRef]
- Wu, C.; Chen, W.; Cao, C.; Tian, R.; Liu, D.; Bao, D. Diagnosis of Wetland Ecosystem Health in the Zoige Wetland, Sichuan of China. Wetlands 2018, 38, 469–484. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Zhang, G.; Chen, Y. On the spatial relationship between ecosystem services and urbanization: A case study in Wuhan, China. Sci. Total Environ. 2018, 637–638, 780–790. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R.; Kong, P. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Sci. Total Environ. 2018, 616–617, 376–385. [Google Scholar] [CrossRef]
- Van Niekerk, L.; Adams, J.B.; Bate, G.C.; Forbes, A.T.; Forbes, N.T.; Huizinga, P.; Lamberth, S.J.; MacKay, C.F.; Petersen, C.; Taljaard, S.; et al. Country-wide assessment of estuary health: An approach for integrating pressures and ecosystem response in a data limited environment. Estuar. Coast. Shelf Sci. 2013, 130, 239–251. [Google Scholar] [CrossRef]
- Styers, D.M.; Chappelka, A.H.; Marzen, L.J.; Somers, G.L. Developing a land-cover classification to select indicators of forest ecosystem health in a rapidly urbanizing landscape. Landsc. Urban Plan. 2010, 94, 158–165. [Google Scholar] [CrossRef]
- Belloumi, M.; Alshehry, A. The Impact of Urbanization on Energy Intensity in Saudi Arabia. Sustainability 2016, 8, 375. [Google Scholar] [CrossRef] [Green Version]
- Choubin, B.; Moradi, E.; Golshan, M.; Adamowski, J.; Sajedi-Hosseini, F.; Mosavi, A. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Sci. Total Environ. 2019, 651, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, S.; Pal, S. Modeling flood plain wetland transformation in consequences of flow alteration in Punarbhaba river in India and Bangladesh. J. Clean. Prod. 2020, 261, 120767. [Google Scholar] [CrossRef]
- He, J.; Pan, Z.; Liu, D.; Guo, X. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; Mageau, M. What is a healthy ecosystem? Aquat. Ecol. 1999, 33, 105–115. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Mandal, A. Research note: Ecosystem Health (EH) assessment of a rapidly urbanizing metropolitan city region of eastern India—A study on Kolkata Metropolitan Area. Landsc. Urban Plan. 2020, 204, 103938. [Google Scholar] [CrossRef]
- Suo, A.N.; Xiong, Y.C.; Wang, T.M.; Yue, D.X.; Ge, J.P. Ecosystem health assessment of the Jinghe River Watershed on the Huangtu Plateau. Ecohealth 2008, 5, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.E.; Pinzón, J.E.; Didan, K.; Morisette, J.T.; Tucker, C.J. Evaluation of the consistency of Long-term NDVI time series derived from AVHRR, SPOT-vegetation, SeaWiFS, MODIS, and landsat ETM+ sensors. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1787–1793. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Colding, J. “Ecological land-use complementation” for building resilience in urban ecosystems. Landsc. Urban Plan. 2007, 81, 46–55. [Google Scholar] [CrossRef]
- Morris, M.D. Factorial Sampling Plans for Preliminary Computational Experiments. Technometrics 1991, 33, 161. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Praveen, B.; Rahman, A. Dynamics of ecosystem services (ESs) in response to land use land cover (LU/LC) changes in the lower Gangetic plain of India. Ecol. Indic. 2020, 112, 106121. [Google Scholar] [CrossRef]
- Campolongo, F.; Braddock, R. Sensitivity analysis of the IMAGE greenhouse model. Environ. Model. Softw. 1999, 14, 275–282. [Google Scholar] [CrossRef]
- Xiao, R.; Yu, X.; Shi, R.; Zhang, Z.; Yu, W.; Li, Y.; Chen, G.; Gao, J. Ecosystem health monitoring in the Shanghai-Hangzhou Bay Metropolitan Area: A hidden Markov modeling approach. Environ. Int. 2019, 133, 105170. [Google Scholar] [CrossRef]
- Yu, G.; Yu, Q.; Hu, L.; Zhang, S.; Fu, T.; Zhou, X.; He, X.; Liu, Y.; Wang, S.; Jia, H. Ecosystem health assessment based on analysis of a land use database. Appl. Geogr. 2013, 44, 154–164. [Google Scholar] [CrossRef]
- Liu, R.; Dong, X.; Zhang, P.; Zhang, Y.; Wang, X.; Gao, Y. Study on the sustainable development of an arid Basin based on the coupling process of ecosystem health and human wellbeing under land use change—A case study in the Manas River Basin, Xinjiang, China. Sustainability 2020, 12, 1201. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wang, Y.; Xie, S.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between urbanization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef]
- Malvić, T.; Ivšinović, J.; Velić, J.; Sremac, J.; Barudžija, U. Application of the Modified Shepard’s Method (MSM): A Case Study with the Interpolation of Neogene Reservoir Variables in Northern Croatia. Stats 2020, 3, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Ivšinović, J.; Malvić, T. Application of the Radial Basis Function interpolation method in selected reservoirs of the Croatian part of the Pannonian Basin System. Min. Miner. Deposits 2020, 14, 37–42. [Google Scholar] [CrossRef]
- Tajbakhsh, A.; Karimi, A.; Zhang, A. Modeling land cover change dynamic using a hybrid model approach in Qeshm Island, Southern Iran. Environ. Monit. Assess. 2020, 192, 303. [Google Scholar] [CrossRef]
- Flores-Casas, R.; Ortega-Huerta, M.A. Modelling land cover changes in the tropical dry forest surrounding the Chamela-Cuixmala biosphere reserve, Mexico. Int. J. Remote Sens. 2019, 40, 6948–6974. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Islam, H.; Shahid, S.; Khatun, M.K.; Ali, M.M.; Rahman, M.; Ibrahim, S.M.; Almoajel, A.M. Spatiotemporal nexus between vegetation change and extreme climatic indices and their possible causes of change. J. Environ. Manag. 2021, 289, 112505. [Google Scholar] [CrossRef]
- Islam, A.R.M.T.; Talukdar, S.; Mahato, S.; Ziaul, S.; Eibek, K.U.; Akhter, S.; Pham, Q.B.; Mohammadi, B.; Karimi, F.; Linh, N.T.T. Machine learning algorithm-based risk assessment of riparian wetlands in Padma River Basin of Northwest Bangladesh. Environ. Sci. Pollut. Res. 2021, 1–22. [Google Scholar] [CrossRef]
- Jat, M.K.; Garg, P.K.; Khare, D. Modeling urban growth using spatial analysis techniques: A case study of Ajmer city (India). Int. J. Remote Sens. 2008, 29, 543–567. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y.; Rahman, Z. Dynamics of land use/cover changes and the analysis of landscape fragmentation in Dhaka Metropolitan, Bangladesh. GeoJournal 2010, 77, 315–330. [Google Scholar] [CrossRef]
- Costanza, R. Toward an operational definition of ecosystem health. In Ecosystem Health: New Goals for Environmental Management; Costanza, R., Norton, B.G., Hasktell, B.D., Eds.; Island Press: Washington, DC, USA, 1992; pp. 239–256. [Google Scholar]
- Peng, J.; Liu, Y.; Wu, J.; Lv, H.; Hu, X. Linking ecosystem services and landscape patterns to assess urban ecosystem health: A case study in Shenzhen City, China. Landsc. Urban Plan. 2015, 143, 56–68. [Google Scholar] [CrossRef]
- He, W.; Qin, N.; Kong, X.; Liu, W.; He, Q.; Ouyang, H.; Yang, C.; Jiang, Y.; Wang, Q.; Yang, B.; et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake. Sci. Total Environ. 2013, 461, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Kruse, M. Ecosystem health indicators. In Encyclopedia of Ecology, 2nd ed.; Fath, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 407–414. [Google Scholar]
- Kang, X.; Song, J.; Yuan, H.; Duan, L.; Li, X.; Li, N.; Liang, X.; Qu, B. Speciation of heavy metals in different grain sizes of Jiaozhou Bay sediments: Bioavailability, ecological risk assessment and source analysis on a centennial timescale. Ecotoxicol. Environ. Saf. 2017, 143, 296–306. [Google Scholar] [CrossRef]
- Myneni, R.B.; Ganapol, B.D.; Asrar, G. Remote sensing of vegetation canopy photosynthetic and stomatal conductance efficiencies. Remote Sens. Environ. 1992, 42, 217–238. [Google Scholar] [CrossRef]
- Song, D.; Gao, Z.; Zhang, H.; Xu, F.; Zheng, X.; Ai, J.; Hu, X.; Huang, G.; Zhang, H. GIS-based health assessment of the marine ecosystem in Laizhou Bay, China. Mar. Pollut. Bull. 2017, 125, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Rui, H.; Luo, G. Temporal–Spatial distribution of ecosystem health and its response to human interference based on different terrain gradients: A case study in Gannan, China. Sustainability 2020, 12, 1773. [Google Scholar] [CrossRef] [Green Version]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Ahmed, M.; Islam, A.R.M.T.; Shahfahad; Thanh, N.V. Proposing receiver operating characteristic-based sensitivity analysis with introducing swarm optimized ensemble learning algorithms for groundwater potentiality modelling in Asir region, Saudi Arabia. Geocarto Int. 2021, 1–28. [Google Scholar] [CrossRef]
- Qian, Y.; Lou, Y.; Chu, Y.; Liu, J.; Hu, J. Ecosystem Evaluation of International Important Wetlands in Dongting Lake. Wetl. Sci. 2016, 14, 516–523. [Google Scholar]
- Talukdar, S.; Eibek, K.U.; Akhter, S.; Ziaul, S.; Islam, A.R.M.T.; Mallick, J. Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the Teesta River Basin, Bangladesh. Ecol. Indic. 2021, 126, 107612. [Google Scholar] [CrossRef]
- Jia, H.; Cao, C.; Ma, G.; Bao, D.; Wu, X.; Xu, M.; Zhao, J.; Tian, R. Assessment of wetland ecosystem health in the source region of Yangtze, Yellow and Yalu Tsangpo Rivers of Qinghai province. Wetl. Sci. 2011, 9, 209–217. [Google Scholar]
- Xie, X.; Fang, B.; Xu, H.; He, S.; Li, X. Study on the coordinated relationship between Urban Land use efficiency and ecosystem health in China. Land Use Policy 2021, 102, 105235. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [Green Version]
- Ran, C.; Wang, S.; Bai, X.; Tan, Q.; Wu, L.; Luo, X.; Chen, H.; Xi, H.; Lu, Q. Evaluation of temporal and spatial changes of global ecosystem health. Land Degrad. Dev. 2021, 32, 1500–1512. [Google Scholar] [CrossRef]
- Shi, H.; Shi, T.; Han, F.; Liu, Q.; Wang, Z.; Zhao, H. Conservation value of world natural heritage site’ outstanding universal value via multiple techniques—Bogda, XinjiangTianshan. Sustainability 2019, 11, 5953. [Google Scholar] [CrossRef] [Green Version]
Land Use Types | 1990 | 2000 | 2018 | Δ Change (1990–2000) (ha) | Δ Change (%) (1990–2000) | Δ Change (2000–2018) (ha) | Δ Change (%) (2000–2018) | Δ Change (1990–2018) (ha) | Δ Change (%) (1990–2018) |
---|---|---|---|---|---|---|---|---|---|
Area (ha) | Area (ha) | Area (ha) | |||||||
Built up | 6246 | 10,520 | 27,145 | 4274 | 3.34 | 16,625 | 13 | 20,899 | 16.34 |
Water bodies | 136 | 113 | 52 | −23 | −0.02 | −61 | −0.05 | −84 | −0.07 |
Dense veg. | 128 | 267 | 944 | 139 | 0.11 | 677 | 0.53 | 816 | 0.64 |
Sparse veg. | 8530 | 5312 | 7547 | −3218 | −2.52 | 2235 | 1.75 | −983 | −0.77 |
Agri. land | 2821 | 2245 | 1775 | −576 | −0.45 | −470 | −0.37 | −1046 | −0.82 |
Scrubland | 47,730 | 36,136 | 33,203 | −11,594 | −9.07 | −2933 | −2.29 | −14,527 | −11.36 |
Bare soil | 17,217 | 20,302 | 11,394 | 3085 | 2.41 | −8908 | −6.97 | −5823 | −4.55 |
Exposed rocks | 45,061 | 52,973 | 45,808 | 7912 | 6.19 | −7165 | −5.6 | 747 | 0.58 |
LULC Classes | 1990 | 2000 | 2018 | |||
---|---|---|---|---|---|---|
Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | Producer’s Accuracy | User’s Accuracy | |
Built-up | 84.77% | 81.88% | 85.87% | 80.98% | 88.12% | 84.12% |
Water bodies | 96.92% | 97.82% | 96.91% | 99.93% | 98.01% | 98.71% |
Dense vegetation | 88.21% | 81.95% | 93.01% | 82.95% | 88.81% | 84.93% |
Sparse vegetation | 82.31% | 83.78% | 80.92% | 75.10% | 84.01% | 75.07% |
Agricultural land | 86.58% | 84.10% | 85.94% | 89.66% | 91.07% | 91.09% |
Scrubland | 95.12% | 91.96% | 91.01% | 92.16% | 96.01% | 90.06% |
Bare soil | 95.21% | 94.06% | 95.93% | 94.16% | 94.81% | 90.47% |
Exposed rock | 96.12% | 90.95% | 96.87% | 88.45% | 98.02% | 89.98% |
Overall accuracy | 88.64% | 87.60% | 90.71% | |||
Kappa statistics | 0.85 | 0.84 | 0.87 | |||
RMSE | 0.54 | 0.57 | 0.39 |
Land-Use Types | 1990 (ESV in US$ ha−1 yr−1) | 2000 (ESV in US$ ha−1 yr−1) | 2018 (ESV in US$ ha−1 yr−1) | 2028 (ESV in US$ ha−1 yr−1) |
---|---|---|---|---|
Built up | 0 | 0 | 0 | 0 |
Water bodies | 1,155,728 | 960,274 | 441,896 | 279,924 |
Dense vegetation | 124,032 | 258,723 | 914,736 | 864,077 |
Sparse vegetation | 1,978,960 | 1,232,384 | 1,750,904 | 2,098,670 |
Agricultural land | 259,532 | 206,540 | 163,300 | 161,949 |
Scrubland | 1.1 × 107 | 8,383,552 | 7,703,096 | 7,992,279 |
Bare soil | 0 | 0 | 0 | 0 |
Exposed rocks | 0 | 0 | 0 | 0 |
Ecosystem Health Conditions | Area (km2) | |||
---|---|---|---|---|
1990 | 2000 | 2018 | 2028 | |
Very poor | 234.63 | 308.22 | 385.39 | 442.02 |
Poor | 450.61 | 529.73 | 458.08 | 369 |
Moderate | 505.51 | 361.36 | 349.78 | 360.56 |
Good | 85.3 | 75.57 | 75.47 | 89.96 |
Very good | 2.64 | 3.8 | 9.96 | 9.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mallick, J.; AlQadhi, S.; Talukdar, S.; Pradhan, B.; Bindajam, A.A.; Islam, A.R.M.T.; Dajam, A.S. A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia. Remote Sens. 2021, 13, 2632. https://doi.org/10.3390/rs13132632
Mallick J, AlQadhi S, Talukdar S, Pradhan B, Bindajam AA, Islam ARMT, Dajam AS. A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia. Remote Sensing. 2021; 13(13):2632. https://doi.org/10.3390/rs13132632
Chicago/Turabian StyleMallick, Javed, Saeed AlQadhi, Swapan Talukdar, Biswajeet Pradhan, Ahmed Ali Bindajam, Abu Reza Md. Towfiqul Islam, and Amal Saad Dajam. 2021. "A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia" Remote Sensing 13, no. 13: 2632. https://doi.org/10.3390/rs13132632
APA StyleMallick, J., AlQadhi, S., Talukdar, S., Pradhan, B., Bindajam, A. A., Islam, A. R. M. T., & Dajam, A. S. (2021). A Novel Technique for Modeling Ecosystem Health Condition: A Case Study in Saudi Arabia. Remote Sensing, 13(13), 2632. https://doi.org/10.3390/rs13132632