Sensing Travel Source–Sink Spatiotemporal Ranges Using Dockless Bicycle Trajectory via Density-Based Adaptive Clustering
Abstract
:1. Introduction
- (1)
- Proposing a density-based bivariate clustering method to identify travel source–sink ranges. Compared to pre-setting the boundaries using a geographic unit strategy, density-based clustering could avoid the potential neglect of arbitrarily shaped travel source–sink ranges.
- (2)
- Improving an adaptive source–sink clustering estimation approach to solve the uncertainty of hyper-parameters. This paper employs statistical significance testing, which is more executable for cases without reliable a priori knowledge of a dataset.
- (3)
- Developing a spatiotemporal joint strategy to overcome the separate extraction of source–sink periods and areas. Snapshot time and partition space can easily lead to bias in the estimation of consecutive spatiotemporal events in the real world.
2. Related Work
3. Study Area and Dataset
4. Methods
4.1. Optimal Spatiotemporal Neighborhood Construction
4.2. Adaptive Identification of Spatiotemporal Core Entities
4.3. Travel Source–Sink Range Detection
- (1)
- Select any source core point oc_ pi as the seed point, and define the other origin points pj within the OSTDN(pi) as dense reachable points from oc_ pi. On this basis, aggregate all the dense reachable points from oc_ pi into a source pattern OP1.
- (2)
- For any other source core point pk in OP1, keep the aggregation operation in (1) to expand OP1 until all the source core points in OP1 have been visited.
- (3)
- Reselect the other source core points that have not been visited in the GED as new seed points, and repeat the above process (1)~(2) to generate a new OP, until there are no visited source core points within the GDE.
- (4)
- Finally, the spatiotemporal extents of the travel source patterns are merged through the whole entities in OP = {OP1, OP2, …}.
5. Experimental Results
5.1. Experimental Comparisons and Quantitative Evaluation
5.2. Spatiotemporal Distribution of Bicycle Travel Sources and Sinks
5.3. Typical Bicycle Travel Source and Sink Scenarios
6. Discussion and Conclusions
6.1. Discussion
6.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Debbage, N. Urban Morphology and Traffic Congestion: Longitudinal Evidence from US Cities. Comput. Environ. Urban Syst. 2021, 89, 101676. [Google Scholar] [CrossRef]
- Cao, C.; Zhen, F.; Huang, X. How Does Perceived Neighborhood Environment Affect Commuting Mode Choice and Commuting CO2 Emissions? An Empirical Study of Nanjing, China. Int. J. Environ. Res. Public Health 2022, 19, 7649. [Google Scholar] [CrossRef]
- Coretti Sanchez, N.; Martinez, I.; Alonso Pastor, L.; Larson, K. On the Simulation of Shared Autonomous Micro-Mobility. Commun. Transp. Res. 2022, 2, 100065. [Google Scholar] [CrossRef]
- Gao, K.; Yang, Y.; Gil, J.; Qu, X. Data-Driven Interpretation on Interactive and Nonlinear Effects of the Correlated Built Environment on Shared Mobility. J. Transp. Geogr. 2023, 110, 103604. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J. Urban and Transport Planning Pathways to Carbon Neutral, Liveable and Healthy Cities; A Review of the Current Evidence. Environ. Int. 2020, 140, 105661. [Google Scholar] [CrossRef]
- Zhao, X.; Ke, Y.; Zuo, J.; Xiong, W.; Wu, P. Evaluation of Sustainable Transport Research in 2000-2019. J. Clean Prod. 2020, 256, 120404. [Google Scholar] [CrossRef]
- Bardaka, E.; Hajibabai, L.; Singh, M.P.; Murukannaiah, P.K. Reimagining Ride Sharing: Efficient, Equitable, Sustainable Public Microtransit. IEEE Internet Comput. 2020, 24, 38–44. [Google Scholar] [CrossRef]
- Wang, Y.; Tong, D.; Li, W.; Liu, Y. Optimizing the Spatial Relocation of Hospitals to Reduce Urban Traffic Congestion: A Case Study of Beijing. Trans. GIS 2019, 23, 365–386. [Google Scholar] [CrossRef]
- Liu, B.; Deng, M.; Yang, J.; Shi, Y.; Huang, J.; Li, C.; Qiu, B. Detecting Anomalous Spatial Interaction Patterns by Maximizing Urban Population Carrying Capacity. Comput. Environ. Urban Syst. 2021, 87, 101616. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, F.; Xiao, Y.; Gao, S. Urban Land Uses and Traffic ‘Source-Sink Areas’: Evidence from GPS-Enabled Taxi Data in Shanghai. Landsc. Urban Plan. 2012, 106, 73–87. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Wu, K. Context-Aware Taxi Dispatching at City-Scale Using Deep Reinforcement Learning. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1996–2009. [Google Scholar] [CrossRef]
- Jia, R.; Chamoun, R.; Wallenbring, A.; Advand, M.; Yu, S.; Liu, Y.; Gao, K.; Jia, R.; Chamoun, R.; Wallenbring, A.; et al. A Spatio-Temporal Deep Learning Model for Short-Term Bike-Sharing Demand Prediction. Electron. Res. Arch. 2023, 31, 1031–1047. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, M.; Lin, H. Estimating the Urban Fractional Vegetation Cover Using an Object-Based Mixture Analysis Method and Sentinel-2 MSI Imagery. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2020, 13, 341–350. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, C.; Du, B.; Zhang, L. Density Map-Based Vehicle Counting in Remote Sensing Images with Limited Resolution. ISPRS-J. Photogramm. Remote Sens. 2022, 189, 201–217. [Google Scholar] [CrossRef]
- Chen, J.; Dai, X.; Guo, Y.; Zhu, J.; Mei, X.; Deng, M.; Sun, G. Urban Built Environment Assessment Based on Scene Understanding of High-Resolution Remote Sensing Imagery. Remote Sens. 2023, 15, 1436. [Google Scholar] [CrossRef]
- Yao, S.; Li, L.; Cheng, G.; Zhang, B. Analyzing Long-Term High-Rise Building Areas Changes Using Deep Learning and Multisource Satellite Images. Remote Sens. 2023, 15, 2427. [Google Scholar] [CrossRef]
- Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing Travel Patterns and City Structure with Taxi Trip Data. J. Transp. Geogr. 2015, 43, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Liu, J.; Xu, Y.; Lv, Y.; Pei, T.; Du, Y.; Zhou, C. Identification of Spatial and Functional Interactions in Beijing Based on Trajectory Data. Appl. Geogr. 2022, 145, 102744. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Gao, S.; Gong, L.; Kang, C.; Zhi, Y.; Chi, G.; Shi, L. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments. Ann. Assoc. Am. Geogr. 2015, 105, 512–530. [Google Scholar] [CrossRef]
- Liu, Q.; Huan, W.; Deng, M. A Method with Adaptive Graphs to Constrain Multi-View Subspace Clustering of Geospatial Big Data from Multiple Sources. Remote Sens. 2022, 14, 4394. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; He, T.; Xiao, R. Urban Vitality and Its Influencing Factors: Comparative Analysis Based on Taxi Trajectory Data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2022, 15, 5102–5114. [Google Scholar] [CrossRef]
- Pan, G.; Qi, G.; Wu, Z.; Zhang, D.; Li, S. Land-Use Classification Using Taxi GPS Traces. IEEE Trans. Intell. Transp. Syst. 2013, 14, 113–123. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, X.; Xu, Y.; Shaw, S.-L.; Yin, L. Spatiotemporal Model for Assessing the Stability of Urban Human Convergence and Divergence Patterns. Int. J. Geogr. Inf. Sci. 2017, 31, 2119–2141. [Google Scholar] [CrossRef]
- Macqueen, J. Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 27 December–7 January 1967; pp. 281–297. [Google Scholar]
- Gao, Y.; Song, C.; Guo, S.; Pei, T. Spatial-temporal Characteristics and Influencing Factors of Source and Sink of Dockless Sharing Bicycles Connected to Subway Stations. J. Geo-Inf. Sci. 2021, 23, 155–170. [Google Scholar] [CrossRef]
- Openshaw, S. The Modifiable Areal Unit Problem. Concepts and Techniques in Modern Geography; GeoBooks: Norwich, UK, 1984; p. 38. [Google Scholar]
- Zhao, P.; Qin, K.; Ye, X.; Wang, Y.; Chen, Y. A Trajectory Clustering Approach Based on Decision Graph and Data Field for Detecting Hotspots. Int. J. Geogr. Inf. Sci. 2017, 31, 1101–1127. [Google Scholar] [CrossRef]
- Steenberghen, T.; Dufays, T.; Thomas, I.; Flahaut, B. Intra-Urban Location and Clustering of Road Accidents Using GIS: A Belgian Example. Int. J. Geogr. Inf. Sci. 2004, 18, 169–181. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, D.; Tang, J.; Deng, M.; Liu, H.; Liu, B. Detecting Spatiotemporal Extents of Traffic Congestion: A Density-Based Moving Object Clustering Approach. Int. J. Geogr. Inf. Sci. 2021, 35, 1449–1473. [Google Scholar] [CrossRef]
- Tao, R.; Thill, J.-C. Flow Cross K-Function: A Bivariate Flow Analytical Method. Int. J. Geogr. Inf. Sci. 2019, 33, 2055–2071. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Q.; Yang, J.; Deng, M. A Network-Constrained Clustering Method for Bivariate Origin-Destination Movement Data. Int. J. Geogr. Inf. Sci. 2023, 37, 767–787. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, J.; Deng, M.; Liu, W.; Xu, R. BiFlowAMOEBA for the Identification of Arbitrarily Shaped Clusters in Bivariate Flow Data. Int. J. Geogr. Inf. Sci. 2022, 36, 1784–1808. [Google Scholar] [CrossRef]
- Gao, Y.; Li, T.; Wang, S.; Jeong, M.-H.; Soltani, K. A Multidimensional Spatial Scan Statistics Approach to Movement Pattern Comparison. Int. J. Geogr. Inf. Sci. 2018, 32, 1304–1325. [Google Scholar] [CrossRef]
- Liu, Q.; Wu, Z.; Deng, M.; Liu, W.; Liu, Y. Network-Constrained Bivariate Clustering Method for Detecting Urban Black Holes and Volcanoes. Int. J. Geogr. Inf. Sci. 2020, 34, 1903–1929. [Google Scholar] [CrossRef]
- Song, C.; Pei, T.; Ma, T.; Du, Y.; Shu, H.; Guo, S.; Fan, Z. Detecting Arbitrarily Shaped Clusters in Origin-Destination Flows Using Ant Colony Optimization. Int. J. Geogr. Inf. Sci. 2019, 33, 134–154. [Google Scholar] [CrossRef]
- Pei, T.; Wang, W.; Zhang, H.; Ma, T.; Du, Y.; Zhou, C. Density-Based Clustering for Data Containing Two Types of Points. Int. J. Geogr. Inf. Sci. 2015, 29, 175–193. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.P.; Sander, J.; Xiaowei, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. KDD 1996, 96, 226–231. [Google Scholar]
- Shanghai Municipal Bureau of Statistics; National Bureau of Statistics Shanghai Survey Team. Shanghai Statistical Yearbook 2022; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Deng, M.; Liu, Q.; Cheng, T.; Shi, Y. An Adaptive Spatial Clustering Algorithm Based on Delaunay Triangulation. Comput. Environ. Urban Syst. 2011, 35, 320–332. [Google Scholar] [CrossRef]
- Li, Q.; Racine, J.S. Nonparametric Econometrics: Theory and Practice; Princeton University Press: Princeton, NJ, USA, 2006. [Google Scholar]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 623–656. [Google Scholar] [CrossRef]
- Davies, D.L.; Bouldin, D.W. A Cluster Separation Measure. IEEE Trans. Pattern Anal. Mach. Intell. 1979, PAMI-1, 224–227. [Google Scholar] [CrossRef]
- Caliński, T.; JA, H. A Dendrite Method for Cluster Analysis. Commun. Stat.—Theory Methods 1974, 3, 1–27. [Google Scholar] [CrossRef]
- Arbelaitz, O.; Gurrutxaga, I.; Muguerza, J.; Pérez, J.M.; Perona, I. An Extensive Comparative Study of Cluster Validity Indices. Pattern Recognit. 2013, 46, 243–256. [Google Scholar] [CrossRef]
- Guo, D.; Zhu, X.; Jin, H.; Gao, P.; Andris, C. Discovering Spatial Patterns in Origin-Destination Mobility Data. Trans. GIS 2012, 16, 411–429. [Google Scholar] [CrossRef]
- Birant, D.; Kut, A. ST-DBSCAN: An Algorithm for Clustering Spatial–Temporal Data. Data Knowl. Eng. 2007, 60, 208–221. [Google Scholar] [CrossRef]
- Openshow, S.; Taylor, P.J. A Million or so Correlation Coefficients: Three Experiments on the Modifiable Areal Unit Problem. In Statistical Applications in the Spatial Sciences; Wrigley, N., Ed.; Pion: London, UK, 1979; pp. 127–144. [Google Scholar]
- Gong, P.; Chen, B.; Li, X.; Liu, H.; Wang, J.; Bai, Y.; Chen, J.; Chen, X.; Fang, L.; Feng, S.; et al. Mapping Essential Urban Land Use Categories in China (EULUC-China): Preliminary Results for 2018. Sci. Bull. 2020, 3, 182–187. [Google Scholar] [CrossRef] [PubMed]
Method | Type | DB | CH | NFR |
---|---|---|---|---|
The proposed method | Source | 1.59 | 21.36 | 0.81 |
Sink | 1.30 | 18.70 | −0.79 | |
ST-DBSCAN algorithm | Origin point cluster | 1.56 | 23.90 | 0.28 |
Destination point cluster | 1.46 | 20.37 | −0.27 | |
Pei’s method | Source | 1.60 | 12.97 | 0.77 |
Sink | 1.34 | 9.52 | −0.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Wang, D.; Wang, X.; Chen, B.; Ding, C.; Gao, S. Sensing Travel Source–Sink Spatiotemporal Ranges Using Dockless Bicycle Trajectory via Density-Based Adaptive Clustering. Remote Sens. 2023, 15, 3874. https://doi.org/10.3390/rs15153874
Shi Y, Wang D, Wang X, Chen B, Ding C, Gao S. Sensing Travel Source–Sink Spatiotemporal Ranges Using Dockless Bicycle Trajectory via Density-Based Adaptive Clustering. Remote Sensing. 2023; 15(15):3874. https://doi.org/10.3390/rs15153874
Chicago/Turabian StyleShi, Yan, Da Wang, Xiaolong Wang, Bingrong Chen, Chen Ding, and Shijuan Gao. 2023. "Sensing Travel Source–Sink Spatiotemporal Ranges Using Dockless Bicycle Trajectory via Density-Based Adaptive Clustering" Remote Sensing 15, no. 15: 3874. https://doi.org/10.3390/rs15153874
APA StyleShi, Y., Wang, D., Wang, X., Chen, B., Ding, C., & Gao, S. (2023). Sensing Travel Source–Sink Spatiotemporal Ranges Using Dockless Bicycle Trajectory via Density-Based Adaptive Clustering. Remote Sensing, 15(15), 3874. https://doi.org/10.3390/rs15153874