Implicit Sharpness-Aware Minimization for Domain Generalization
Abstract
:1. Introduction
2. Related Word
2.1. Domain Adaptation
2.2. Domain Generalization
2.3. Sharpness-Aware Minimization
3. Methodology
3.1. Preliminaries
3.2. SAM’s Optimization and Gradient Conflict
3.3. Implicit Sharpness-Aware Minimization
Algorithm 1: The Algorithm of ISAM |
Input: Model , source domains , initial weight , learning rate , training steps T, sample mini-batch , hyperparameter . Output: Model trained with ISAM:
|
4. Experiments
4.1. Experiment Setups and Implementation Details
4.1.1. Dataset
4.1.2. Evaluation Protocol
4.1.3. Implementation Details
4.1.4. Baseline
4.2. Comparison Results
4.2.1. Comparison on Remote Sensing Datasets
4.2.2. Comparison on DG Datasets
4.3. Ablation Study and Parameter Analysis
4.3.1. Ablation Study on DG Datasets
4.3.2. Ablation Study on CIFAR-10
4.3.3. Parameter Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aggarwal, K.; Singh, S.K.; Chopra, M.; Kumar, S.; Colace, F. Deep learning in robotics for strengthening industry 4.0.: Opportunities, challenges and future directions. In Robotics and AI for Cybersecurity and Critical Infrastructure in Smart Cities; Springer: Cham, Switzerland, 2022; pp. 1–19. [Google Scholar] [CrossRef]
- Jiang, W.; Yang, H.; Zhang, Y.; Kwok, J. An adaptive policy to employ sharpness-aware minimization. arXiv 2023. [Google Scholar] [CrossRef]
- Tsuneki, M. Deep learning models in medical image analysis. J. Oral Biosci. 2022, 64, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Wang, C.; Ma, X.; Song, B.; Liu, Z.; Sun, F. Zero-Shot Sketch-Based Remote-Sensing Image Retrieval Based on Multi-Level and Attention-Guided Tokenization. Remote Sens. 2024, 16, 1653. [Google Scholar] [CrossRef]
- Hu, J.; Qi, L.; Zhang, J.; Shi, Y. Domain generalization via Inter-domain Alignment and Intra-domain Expansion. Pattern Recognit. 2024, 146, 110029. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.C. Adaptive Domain Generalization Via Online Disagreement Minimization. IEEE Trans. Image Process. 2023, 32, 4247–4258. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Zhang, R.; Fan, Z.; Wang, Y.; Wu, Y.-Y.; Zhang, Y. Fourier-based augmentation with applications to domain generalization. Pattern Recognit. 2023, 139, 109474. [Google Scholar] [CrossRef]
- Guan, H.; Liu, M. Domain Adaptation for Medical Image Analysis: A Survey. IEEE Trans. Biomed. Eng. 2022, 69, 1173–1185. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Li, L.; Ren, W.; Gao, C.; Sang, N. Domain adaptation for image dehazing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 2808–2817. [Google Scholar]
- Hsu, H.-K.; Yao, C.-H.; Tsai, Y.-H.; Hung, W.-C.; Tseng, H.-Y.; Singh, M.; Yang, M.-H. Progressive domain adaptation for object detection. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Snowmass Village, CO, USA, 2–5 March 2020; pp. 749–757. [Google Scholar]
- Niu, Z.; Yuan, J.; Ma, X.; Xu, Y.; Liu, J.; Chen, Y.W.; Tong, R.; Lin, L. Knowledge Distillation-based Domain-invariant Representation Learning for Domain Generalization. IEEE Trans. Multimed. 2023, 26, 245–255. [Google Scholar] [CrossRef]
- Zhou, K.; Liu, Z.; Qiao, Y.; Xiang, T.; Loy, C.C. Domain Generalization: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 4396–4415. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lan, C.; Liu, C.; Ouyang, Y.; Qin, T.; Lu, W.; Chen, Y.; Zeng, W.; Yu, P.S. Generalizing to Unseen Domains: A Survey on Domain Generalization. IEEE Trans. Knowl. Data Eng. 2023, 35, 8052–8072. [Google Scholar] [CrossRef]
- Eastwood, C.; Robey, A.; Singh, S.; Von Kügelgen, J.; Hassani, H.; Pappas, G.J.; Schölkopf, B. Probable domain generalization via quantile risk minimization. In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, LO, USA & Online, 28 November–9 December; Volume 35, pp. 17340–17358.
- Dubois, Y.; Ruan, Y.; Maddison, C.J. Optimal representations for covariate shifts. In Proceedings of the Thirty-Fifth Annual Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021. [Google Scholar]
- Blanchard, G.; Deshmukh, A.A.; Dogan, U.; Lee, G.; Scott, C. Domain generalization by marginal transfer learning. J. Mach. Learn. Res. 2021, 22, 1–55. [Google Scholar]
- Dayal, A.; KB, V.; Cenkeramaddi, L.R.; Mohan, C.; Kumar, A.; Balasubramanian, N.V. MADG: Margin-based Adversarial Learning for Domain Generalization. In Proceedings of the Thirty-Seventh Annual Conference on Neural Information Processing Systems (NeurIPS 2023), New Orleans, LA, USA, 10–16 December 2023; Volume 36, pp. 58938–58952. [Google Scholar]
- Krueger, D.; Caballero, E.; Jacobsen, J.-H.; Zhang, A.; Binas, J.; Zhang, D.; Le Priol, R.; Courville, A. Out-of-distribution generalization via risk extrapolation (rex). In Proceedings of the International Conference on Machine Learning, Online, 18–24 July 2021; pp. 5815–5826. [Google Scholar]
- Zhang, M.M.; Marklund, H.; Dhawan, N.; Gupta, A.; Levine, S.; Finn, C. Adaptive risk minimization: A meta-learning approach for tackling group shift. arXiv 2020. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Zhou, W.; Hospedales, T. Feature-critic networks for heterogeneous domain generalization. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 3915–3924. [Google Scholar]
- Li, D.; Yang, Y.; Song, Y.-Z.; Hospedales, T. Learning to generalize: Meta-learning for domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar] [CrossRef]
- Shi, Y.; Seely, J.; Torr, P.H.; Siddharth, N.; Hannun, A.; Usunier, N.; Synnaeve, G. Gradient matching for domain generalization. arXiv 2021. [Google Scholar] [CrossRef]
- Rame, A.; Dancette, C.; Cord, M. Fishr: Invariant gradient variances for out-of-distribution generalization. In Proceedings of the International Conference on Machine Learning, Baltimore, MA, USA, 17–23 July 2022; pp. 18347–18377. [Google Scholar]
- Zhou, K.; Yang, Y.; Qiao, Y.; Xiang, T. MixStyle Neural Networks for Domain Generalization and Adaptation. Int. J. Comput. Vis. 2024, 132, 822–836. [Google Scholar] [CrossRef]
- Gulrajani, I.; Lopez-Paz, D. In search of lost domain generalization. arXiv 2020. [Google Scholar] [CrossRef]
- Foret, P.; Kleiner, A.; Mobahi, H.; Neyshabur, B. Sharpness-aware minimization for efficiently improving generalization. arXiv 2020. [Google Scholar] [CrossRef]
- Du, J.; Yan, H.; Feng, J.; Zhou, J.T.; Zhen, L.; Goh, R.S.M.; Tan, V.Y. Efficient sharpness-aware minimization for improved training of neural networks. arXiv 2021. [Google Scholar] [CrossRef]
- Liu, Y.; Mai, S.; Chen, X.; Hsieh, C.J.; You, Y. Towards Efficient and Scalable Sharpness-Aware Minimization. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 12350–12360. [Google Scholar] [CrossRef]
- Zhuang, J.; Gong, B.; Yuan, L.; Cui, Y.; Adam, H.; Dvornek, N.; Tatikonda, S.; Duncan, J.; Liu, T. Surrogate gap minimization improves sharpness-aware training. arXiv 2022. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, Z.; Lei, Z.; Zhang, L. Sharpness-aware gradient matching for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 3769–3778. [Google Scholar]
- Wilson, G.; Cook, D.J. A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. 2020, 11, 51. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Yue, X.; Zhang, S.; Li, B.; Zhao, H.; Wu, B.; Krishna, R.; Gonzalez, J.E.; Sangiovanni-Vincentelli, A.L.; Seshia, S.A.; et al. A Review of Single-Source Deep Unsupervised Visual Domain Adaptation. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 473–493. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, Y.; Wu, Q.; Zhao, P.; Niu, S.; Huang, J.; Tan, M. Collaborative unsupervised domain adaptation for medical image diagnosis. IEEE Trans. Image Process. 2020, 29, 7834–7844. [Google Scholar] [CrossRef]
- Li, R.; Jiao, Q.; Cao, W.; Wong, H.-S.; Wu, S. Model adaptation: Unsupervised domain adaptation without source data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 9641–9650. [Google Scholar]
- Liang, J.; Hu, D.; Feng, J. Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In Proceedings of the International Conference on Machine Learning, Online, 12–18 July 2020; pp. 6028–6039. [Google Scholar]
- Yang, S.; Wang, Y.; Van De Weijer, J.; Herranz, L.; Jui, S. Generalized source-free domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 8978–8987. [Google Scholar]
- Li, D.; Wu, A.; Wang, Y.; Han, Y. Prompt-Driven Dynamic Object-Centric Learning for Single Domain Generalization. arXiv 2024. [Google Scholar] [CrossRef]
- Zhou, K.; Yang, Y.; Qiao, Y.; Xiang, T. Domain generalization with mixstyle. arXiv 2021. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, Y.; Park, S.; Kim, J.; Lee, J. SelfReg: Self-supervised Contrastive Regularization for Domain Generalization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 9599–9608. [Google Scholar] [CrossRef]
- Nam, H.; Lee, H.; Park, J.; Yoon, W.; Yoo, D. Reducing Domain Gap by Reducing Style Bias. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 8686–8695. [Google Scholar] [CrossRef]
- Jiang, Y.; Neyshabur, B.; Mobahi, H.; Krishnan, D.; Bengio, S. Fantastic generalization measures and where to find them. arXiv 2019. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, R.; Yu, H.; Zou, H.; Cui, P. Gradient norm aware minimization seeks first-order flatness and improves generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 20247–20257. [Google Scholar]
- Kaur, S.; Cohen, J.; Lipton, Z.C. On the maximum hessian eigenvalue and generalization. In Proceedings of the 36th Conference on Neural Information Processing Systems (NeurIPS 2022), New Orleans, LO, USA & Online, 28 November–9 December 2022; pp. 51–65. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.S.; Zhang, L. Bag-of-Visual-Words Scene Classifier With Local and Global Features for High Spatial Resolution Remote Sensing Imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 747–751. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010; pp. 270–279. [Google Scholar]
- Zou, Q.; Ni, L.; Zhang, T.; Wang, Q. Deep learning based feature selection for remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2321–2325. [Google Scholar] [CrossRef]
- Zhao, L.; Tang, P.; Huo, L. Feature significance-based multibag-of-visual-words model for remote sensing image scene classification. J. Appl. Remote Sens. 2016, 10, 035004. [Google Scholar] [CrossRef]
- Li, D.; Yang, Y.; Song, Y.Z.; Hospedales, T.M. Deeper, Broader and Artier Domain Generalization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5543–5551. [Google Scholar] [CrossRef]
- Fang, C.; Xu, Y.; Rockmore, D.N. Unbiased Metric Learning: On the Utilization of Multiple Datasets and Web Images for Softening Bias. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 1657–1664. [Google Scholar] [CrossRef]
- Venkateswara, H.; Eusebio, J.; Chakraborty, S.; Panchanathan, S. Deep Hashing Network for Unsupervised Domain Adaptation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5385–5394. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Y.; Song, Y.; Shan, Y.; Liu, L. Improved test-time adaptation for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 17–24 June 2023; pp. 24172–24182. [Google Scholar]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Kai, L.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef]
- Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw. 1999, 10, 988–999. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Song, H.; Li, N.; Zou, L.; Ren, L. Improve unsupervised domain adaptation with mixup training. arXiv 2020. [Google Scholar] [CrossRef]
- Li, H.; Pan, S.J.; Wang, S.; Kot, A.C. Domain Generalization with Adversarial Feature Learning. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5400–5409. [Google Scholar] [CrossRef]
- Li, Y.; Tian, X.; Gong, M.; Liu, Y.; Liu, T.; Zhang, K.; Tao, D. Deep Domain Generalization via Conditional Invariant Adversarial Networks. In Proceedings of the Computer Vision—ECCV 2018, Munich, Germany, 8–14 September 2018; pp. 647–663. [Google Scholar] [CrossRef]
- Sagawa, S.; Koh, P.W.; Hashimoto, T.B.; Liang, P. Distributionally robust neural networks for group shifts: On the importance of regularization for worst-case generalization. arXiv 2019. [Google Scholar] [CrossRef]
- Sun, B.; Saenko, K. Deep CORAL: Correlation Alignment for Deep Domain Adaptation. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 11–14 October 2016; pp. 443–450. [Google Scholar] [CrossRef]
- Pezeshki, M.; Kaba, O.; Bengio, Y.; Courville, A.C.; Precup, D.; Lajoie, G. Gradient starvation: A learning proclivity in neural networks. In Proceedings of the Thirty-Fifth Annual Conference on Neural Information Processing Systems (NeurIPS 2021), Online, 6–14 December 2021; Volume 34, pp. 1256–1272. [Google Scholar]
- Selvaraju, R.R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 618–626. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features From Tiny Images; University of Toronto: Toronto, ON, Canada, 2009. [Google Scholar]
ResNet18 | ResNet50 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dataset | Method | Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-Score |
SIRI-WHU | ERM | 95.4 | 95.4 | 95.3 | 95.3 | 96.6 | 96.7 | 96.5 | 96.6 |
SAM | 96.7 | 96.8 | 96.7 | 96.7 | 97.2 | 97.3 | 97.4 | 97.3 | |
SAGM | 96.9 | 96.9 | 96.9 | 96.9 | 97.9 | 98.0 | 97.8 | 97.9 | |
ISAM (ours) | 97.7 | 97.6 | 97.7 | 97.7 | 98.3 | 98.2 | 98.2 | 98.2 | |
RSSCN7 | ERM | 96.4 | 96.4 | 96.4 | 96.4 | 96.8 | 96.9 | 96.9 | 96.8 |
SAM | 96.8 | 96.7 | 96.8 | 96.7 | 97.1 | 97.2 | 97.2 | 97.2 | |
SAGM | 97.0 | 96.8 | 97.3 | 97.0 | 97.3 | 97.4 | 97.3 | 97.3 | |
ISAM (ours) | 97.1 | 97.1 | 97.2 | 97.2 | 97.7 | 97.7 | 97.8 | 97.7 | |
RSC11 | ERM | 96.0 | 96.4 | 96.2 | 96.1 | 97.2 | 97.5 | 97.4 | 97.4 |
SAM | 97.2 | 97.3 | 97.0 | 97.1 | 98.8 | 98.8 | 98.6 | 98.7 | |
SAGM | 98.0 | 98.4 | 97.6 | 98.0 | 98.8 | 98.7 | 98.8 | 98.7 | |
ISAM (ours) | 98.0 | 97.8 | 97.8 | 97.8 | 99.2 | 99.0 | 99.3 | 99.1 | |
UC Merced Land-Use | ERM | 97.4 | 97.6 | 97.6 | 97.5 | 98.6 | 98.5 | 98.6 | 98.5 |
SAM | 97.4 | 97.4 | 97.7 | 97.5 | 98.8 | 98.7 | 98.7 | 98.6 | |
SAGM | 97.9 | 98.0 | 97.8 | 97.8 | 99.0 | 99.0 | 99.0 | 99.0 | |
ISAM (ours) | 98.6 | 98.4 | 98.4 | 98.4 | 99.3 | 99.2 | 99.2 | 99.2 |
Method | Art | Cartoon | Photo | Sketch | Average |
---|---|---|---|---|---|
Mixup | 80.7 | 71.7 | 94.6 | 71.3 | 79.6 |
MTL † | 78.7 | 73.4 | 94.1 | 74.4 | 80.2 |
MMD | 77.9 | 76.7 | 94.2 | 71.9 | 80.2 |
CDANN † | 80.4 | 73.7 | 93.1 | 74.2 | 80.4 |
ARM † | 79.4 | 75.0 | 94.3 | 73.8 | 80.6 |
ERM | 78.7 | 74.4 | 95.1 | 74.7 | 80.7 |
GroupDRO † | 77.7 | 76.4 | 94.0 | 74.8 | 80.7 |
CondCAD † | 79.7 | 74.2 | 94.6 | 74.8 | 80.8 |
CORAL | 79.7 | 77.4 | 93.8 | 73.7 | 81.2 |
Fish | 77.7 | 77.1 | 94.5 | 75.5 | 81.2 |
MLDG † | 78.4 | 75.1 | 94.8 | 76.7 | 81.3 |
Fishr † | 81.2 | 75.8 | 94.3 | 73.8 | 81.3 |
SagNet † | 82.9 | 73.2 | 94.6 | 76.1 | 81.7 |
SelfReg | 82.5 | 74.4 | 95.4 | 74.9 | 81.8 |
VREx | 78.8 | 75.4 | 94.0 | 79.2 | 81.9 |
SD † | 83.2 | 74.6 | 94.6 | 75.1 | 81.9 |
CAD † | 83.9 | 74.2 | 94.6 | 75.0 | 81.9 |
ISAM (ours) | 82.6 | 74.8 | 95.8 | 75.5 | 82.2 |
Method | Caltech | LabelMe | Sun | VOC | Average |
---|---|---|---|---|---|
MMD | 96.0 | 64.3 | 68.5 | 70.8 | 74.9 |
MTL † | 94.4 | 65.0 | 69.6 | 71.7 | 75.2 |
MLDG † | 95.8 | 63.3 | 68.5 | 73.1 | 75.2 |
CAD † | 94.5 | 63.5 | 70.4 | 72.4 | 75.2 |
VREx | 96.2 | 62.5 | 69.3 | 73.1 | 75.3 |
GroupDRO † | 96.7 | 61.7 | 70.2 | 72.9 | 75.4 |
SagNet | 94.9 | 61.9 | 69.6 | 75.2 | 75.4 |
SD † | 96.5 | 62.2 | 69.7 | 73.6 | 75.5 |
CORAL | 96.5 | 62.8 | 69.1 | 73.8 | 75.6 |
ERM | 97.7 | 62.1 | 70.3 | 73.2 | 75.8 |
ARM † | 96.9 | 61.9 | 71.6 | 73.3 | 75.9 |
CDANN † | 95.4 | 62.6 | 69.9 | 76.2 | 76.0 |
CondCAD † | 96.5 | 62.6 | 69.1 | 76.0 | 76.1 |
Fishr † | 97.2 | 63.3 | 70.4 | 74.0 | 76.2 |
Mixup | 95.6 | 62.7 | 71.3 | 75.4 | 76.3 |
SelfReg | 95.8 | 63.4 | 71.1 | 75.3 | 76.4 |
Fish | 97.4 | 63.4 | 71.5 | 75.2 | 76.9 |
ISAM (ours) | 98.7 | 61.9 | 71.8 | 77.9 | 77.6 |
Method | Art | Clipart | Product | Real | Average |
---|---|---|---|---|---|
VREx | 49.2 | 46.2 | 68.0 | 68.0 | 57.9 |
MMD | 49.2 | 46.7 | 69.4 | 70.3 | 58.9 |
CDANN † | 51.4 | 46.9 | 68.4 | 70.4 | 59.3 |
ARM † | 51.3 | 48.5 | 68.0 | 70.6 | 59.6 |
MTL † | 51.6 | 47.7 | 69.1 | 71.0 | 59.9 |
ERM | 52.1 | 47.1 | 70.0 | 70.5 | 59.9 |
CAD † | 52.1 | 48.3 | 69.7 | 71.9 | 60.5 |
GroupDRO † | 52.6 | 48.2 | 69.9 | 71.5 | 60.6 |
Fishr † | 52.6 | 48.6 | 69.9 | 72.4 | 60.9 |
MLDG † | 53.1 | 48.4 | 70.5 | 71.7 | 60.9 |
CondCAD † | 53.3 | 48.4 | 69.8 | 72.6 | 61.0 |
Fish | 55.6 | 49.1 | 71.4 | 71.7 | 62.0 |
SagNet | 56.5 | 49.6 | 70.6 | 72.2 | 62.2 |
SelfReg | 55.1 | 49.2 | 72.2 | 73.0 | 62.4 |
Mixup | 55.9 | 49.8 | 71.6 | 72.4 | 62.4 |
SD † | 55.0 | 51.3 | 72.5 | 72.7 | 62.9 |
CORAL | 55.4 | 51.5 | 71.8 | 73.2 | 63.0 |
ISAM (ours) | 55.8 | 52.2 | 72.2 | 73.4 | 63.4 |
Method | Art | Cartoon | Photo | Sketch | Average |
---|---|---|---|---|---|
ERM | 78.7 | 74.4 | 95.1 | 74.7 | 80.7 |
SAM | 81.0 | 74.2 | 95.1 | 74.8 | 81.3 |
SAGM | 81.6 | 74.3 | 95.3 | 75.1 | 81.6 |
ISAM | 82.6 | 74.8 | 95.8 | 75.5 | 82.2 |
Method | Caltech | LabelMe | Sun | VOC | Average |
---|---|---|---|---|---|
ERM | 97.7 | 62.1 | 70.3 | 73.2 | 75.8 |
SAM | 98.6 | 60.7 | 72.0 | 76.8 | 77.0 |
SAGM | 97.8 | 62.6 | 71.0 | 77.0 | 77.1 |
ISAM | 98.7 | 61.9 | 71.8 | 77.9 | 77.6 |
Method | Art | Clipart | Product | Real | Average |
---|---|---|---|---|---|
ERM | 52.1 | 47.1 | 70.0 | 70.5 | 59.9 |
SAM | 54.1 | 49.5 | 72.2 | 73.6 | 62.4 |
SAGM | 54.3 | 49.8 | 72.1 | 73.6 | 62.5 |
ISAM | 55.8 | 52.2 | 72.2 | 73.4 | 63.4 |
Method | Optimization Objective | PACS | VLCS | Office-Home |
---|---|---|---|---|
ERM | 80.7 | 75.8 | 59.9 | |
SAM | 81.3 | 77.0 | 62.4 | |
SAGM | 81.6 | 77.1 | 62.5 | |
ISAM | 82.2 | 77.6 | 63.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, M.; Yang, Y.; Zeng, K.; Wang, Q.; Shen, T. Implicit Sharpness-Aware Minimization for Domain Generalization. Remote Sens. 2024, 16, 2877. https://doi.org/10.3390/rs16162877
Dong M, Yang Y, Zeng K, Wang Q, Shen T. Implicit Sharpness-Aware Minimization for Domain Generalization. Remote Sensing. 2024; 16(16):2877. https://doi.org/10.3390/rs16162877
Chicago/Turabian StyleDong, Mingrong, Yixuan Yang, Kai Zeng, Qingwang Wang, and Tao Shen. 2024. "Implicit Sharpness-Aware Minimization for Domain Generalization" Remote Sensing 16, no. 16: 2877. https://doi.org/10.3390/rs16162877
APA StyleDong, M., Yang, Y., Zeng, K., Wang, Q., & Shen, T. (2024). Implicit Sharpness-Aware Minimization for Domain Generalization. Remote Sensing, 16(16), 2877. https://doi.org/10.3390/rs16162877