Comparison of the Impacts of Sea Surface Temperature in the Western Pacific and Indian Ocean on the Asian Summer Monsoon Anticyclone and Water Vapor in the Upper Troposphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. ASMA Index
2.2.2. Walker Circulation
2.2.3. Composite Analysis
2.2.4. Others
3. Results
3.1. Impact of SST Anomalies in the Western Pacific and the Indian Ocean on the ASMA
3.2. Physical Mechanisms of SST Anomalies in the Western Pacific and Indian Oceans Affecting the ASMA
3.3. Impact of SST Anomalies in the Western Pacific and the Indian Ocean on the Water Vapor in the Upper Troposphere
3.4. Physical Mechanisms of SST Anomalies in the Western Pacific and Indian Oceans Affecting the Water Vapor in the Upper Troposphere
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flohn, H. Recent Investigations on the Mechanism of the Summer Monsoon of Southern and Eastern Asia. In Proceedings of the Monsoons of the World, New Delhi, India, 19–21 February 1958; Monsoons World: New Delhi, India, 1960; pp. 75–88. [Google Scholar]
- Hoskins, B.J.; Rodwell, M.J. A Model of the Asian Summer Monsoon. Part I: The Global Scale. J. Atmos. Sci. 1995, 52, 1329–1340. [Google Scholar] [CrossRef]
- Duan, A.M.; Wu, G.X. Role of the Tibetan Plateau Thermal Forcing in the Summer Climate Patterns over Subtropical Asia. Clim. Dyn. 2005, 24, 793–807. [Google Scholar] [CrossRef]
- Boos, W.R.; Kuang, Z. Dominant Control of the South Asian Monsoon by Orographic Insulation versus Plateau Heating. Nature 2010, 463, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.B.; Anderson, C.E. The Development and Decay of the 100-Mb. Summertime Anticyclone over Southern Asia. Mon. Weather Rev. 1963, 91, 3–12. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, J.H.; Wu, D.L.; Read, W.G.; Livesey, N.J.; Waters, J.W.; Zhang, Y.; Wang, B.; Filipiak, M.J.; Davis, C.P.; et al. Convective Outflow of South Asian Pollution: A Global CTM Simulation Compared with EOS MLS Observations. Geophys. Res. Lett. 2005, 32, L14826. [Google Scholar] [CrossRef]
- Gettelman, A.; Kinnison, D.E.; Dunkerton, T.J.; Brasseur, G.P. Impact of Monsoon Circulations on the Upper Troposphere and Lower Stratosphere. J. Geophys. Res. Atmos. 2004, 109, D22101. [Google Scholar] [CrossRef]
- Garny, H.; Randel, W.J. Transport Pathways from the Asian Monsoon Anticyclone to the Stratosphere. Atmos. Chem. Phys. 2016, 16, 2703–2718. [Google Scholar] [CrossRef]
- Honomichl, S.B.; Pan, L.L. Transport from the Asian Summer Monsoon Anticyclone Over the Western Pacific. J. Geophys. Res. Atmos. 2020, 125, e2019JD032094. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Wang, C.; Deng, R. Study on the Relationship between South Asia High and Rainfall of Sichuan-Chongqing Regions in Summer. Plateau Meteorol. 2009, 28, 539–548. [Google Scholar]
- Ning, L.; Liu, J.; Wang, B. How Does the South Asian High Influence Extreme Precipitation over Eastern China? J. Geophys. Res. Atmos. 2017, 122, 4281–4298. [Google Scholar] [CrossRef]
- Huang, Y.; Qian, D.; Dai, J.; Wang, H. Skillful Seasonal Prediction of Afro-Asian Summer Monsoon Precipitation with a Merged Machine Learning and Large Ensemble Approach. NPJ Clim. Atmos. Sci. 2024, 7, 137. [Google Scholar] [CrossRef]
- Park, M.; Randel, W.J.; Gettelman, A.; Massie, S.T.; Jiang, J.H. Transport above the Asian Summer Monsoon Anticyclone Inferred from Aura Microwave Limb Sounder Tracers. J. Geophys. Res. Atmos. 2007, 112, D16309. [Google Scholar] [CrossRef]
- Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Riese, M. Impact of Different Asian Source Regions on the Composition of the Asian Monsoon Anticyclone and of the Extratropical Lowermost Stratosphere. Atmos. Chem. Phys. 2015, 15, 13699–13716. [Google Scholar] [CrossRef]
- Vogel, B.; Günther, G.; Müller, R.; Grooß, J.-U.; Afchine, A.; Bozem, H.; Hoor, P.; Krämer, M.; Müller, S.; Riese, M.; et al. Long-Range Transport Pathways of Tropospheric Source Gases Originating in Asia into the Northern Lower Stratosphere during the Asian Monsoon Season 2012. Atmos. Chem. Phys. 2016, 16, 15301–15325. [Google Scholar] [CrossRef]
- Tissier, A.-S.; Legras, B. Convective Sources of Trajectories Traversing the Tropical Tropopause Layer. Atmos. Chem. Phys. 2016, 16, 3383–3398. [Google Scholar] [CrossRef]
- Ye, D.; Zhang, J. Preliminary simulation experiments on the impact of heating on the summer East Asian atmospheric circulation over the Tibet Plateau. Sci. Chin. 1974, 3, 301–320. [Google Scholar]
- Reiter, E.R.; Gao, D.-Y. Heating of the Tibet Plateau and Movements of the South Asian High During Spring. Mon. Weather Rev. 1982, 110, 1694–1711. [Google Scholar] [CrossRef]
- Peixóto, J.P.; Oort, A.H. Physics of Climate. Rev. Mod. Phys. 1984, 56, 365–429. [Google Scholar] [CrossRef]
- Rodwell, M.J.; Hoskins, B.J. A Model of the Asian Summer Monsoon. Part II: Cross-Equatorial Flow and PV Behavior. J. Atmos. Sci. 1995, 52, 1341–1356. [Google Scholar] [CrossRef]
- Liu, Y.M.; Wu, G.X.; Liu, H.; Liu, P. Condensation Heating of the Asian Summer Monsoon and the Subtropical Anticyclone in the Eastern Hemisphere. Clim. Dyn. 2001, 17, 327–338. [Google Scholar] [CrossRef]
- Wu, G.; He, B.; Liu, Y.; Bao, Q.; Ren, R. Location and Variation of the Summertime Upper-Troposphere Temperature Maximum over South Asia. Clim. Dyn. 2015, 45, 2757–2774. [Google Scholar] [CrossRef]
- Huang, G.; Qu, X.; Hu, K. The Impact of the Tropical Indian Ocean on South Asian High in Boreal Summer. Adv. Atmos. Sci. 2011, 28, 421–432. [Google Scholar] [CrossRef]
- Zhang, Q.; Qian, Y.; Zhang, X. Interannual and Interdecadal Variations of the South Asia High. Chin. J. Atmos. Sci. 2000, 24, 67–78. [Google Scholar]
- Yang, H.; Li, C. Effect of the Tropical Pacific-Indian Ocean Temperature Anomaly Mode on the South Asia High. Chin. J. Atmos. Sci. 2005, 29, 99–110. [Google Scholar]
- Yang, J.; Liu, Q.; Xie, S.-P.; Liu, Z.; Wu, L. Impact of the Indian Ocean SST Basin Mode on the Asian Summer Monsoon. Geophys. Res. Lett. 2007, 34, L02708. [Google Scholar] [CrossRef]
- Li, S.; Lu, J.; Huang, G.; Hu, K. Tropical Indian Ocean Basin Warming and East Asian Summer Monsoon: A Multiple AGCM Study. J. Clim. 2008, 21, 6080–6088. [Google Scholar] [CrossRef]
- Zhou, T.; Yu, R.; Zhang, J.; Drange, H.; Cassou, C.; Deser, C.; Hodson, D.L.R.; Sanchez-Gomez, E.; Li, J.; Keenlyside, N.; et al. Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s. J. Clim. 2009, 22, 2199–2215. [Google Scholar] [CrossRef]
- Li, C.; Li, L.; Tan, Y. Further Study on Structure of South Asia High in the Stratosphere and Influence of ENSO. J. Trop. Meteorol. 2011, 27, 289–298. [Google Scholar]
- Yang, G.; Li, C.; Tan, Y. A Study on Interdecadal Variation of South Asian High and Its Possible Cause. J. Trop. Meteorol. 2013, 29, 529–539. [Google Scholar]
- Xue, X.; Chen, W.; Chen, S.; Feng, J. PDO Modulation of the ENSO Impact on the Summer South Asian High. Clim. Dyn. 2018, 50, 1393–1411. [Google Scholar] [CrossRef]
- Xue, X.; Chen, W.; Zhou, Q. Solar Cycle Modulation of the Connection between Boreal Winter ENSO and Following Summer South Asia High. J. Atmos. Sol.-Terr. Phys. 2020, 211, 105466. [Google Scholar] [CrossRef]
- Matsuno, T. Quasi-Geostrophic Motions in the Equatorial Area. J. Meteorol. Soc. Jpn. Ser. II 1966, 44, 25–43. [Google Scholar] [CrossRef]
- Gill, A.E. Some Simple Solutions for Heat-Induced Tropical Circulation. Q. J. R. Meteorol. Soc. 1980, 106, 447–462. [Google Scholar] [CrossRef]
- Peng, L.X.; Zhu, W.J.; Xian, L.Z.; Hong, N.D.; Chen, H.S.; Pan, L.L.; Liu, Y.B. The Interdecadal Variation of the South Asian High and Its Association with the Sea Surface Temperature of Tropical and Subtropical Regions. J. Trop. Meteorol. 2018, 24, 111–122. [Google Scholar]
- Vogel, B.; Müller, R.; Günther, G.; Spang, R.; Hanumanthu, S.; Li, D.; Riese, M.; Stiller, G.P. Lagrangian Simulations of the Transport of Young Air Masses to the Top of the Asian Monsoon Anticyclone and into the Tropical Pipe. Atmos. Chem. Phys. 2019, 19, 6007–6034. [Google Scholar] [CrossRef]
- Fan, Q.; Bian, J.; Pan, L.L. Stratospheric entry point for upper-tropospheric air within the Asian summer monsoon anticyclone. Sci. China Earth Sci. 2017, 60, 1685–1693. [Google Scholar] [CrossRef]
- Bian, J.; Li, D.; Bai, Z.; Li, Q.; Lyu, D.; Zhou, X. Transport of Asian Surface Pollutants to the Global Stratosphere from the Tibetan Plateau Region during the Asian Summer Monsoon. Natl. Sci. Rev. 2020, 7, 516–533. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.L.; Honomichl, S.B.; Kinnison, D.E.; Abalos, M.; Randel, W.J.; Bergman, J.W.; Bian, J. Transport of Chemical Tracers from the Boundary Layer to Stratosphere Associated with the Dynamics of the Asian Summer Monsoon. J. Geophys. Res. Atmos. 2016, 121, 14159–14174. [Google Scholar] [CrossRef]
- Clemens, J.; Ploeger, F.; Konopka, P.; Portmann, R.; Sprenger, M.; Wernli, H. Characterization of Transport from the Asian Summer Monsoon Anticyclone into the UTLS via Shedding of Low Potential Vorticity Cutoffs. Atmos. Chem. Phys. 2022, 22, 3841–3860. [Google Scholar] [CrossRef]
- Bian, J.; Pan, L.L.; Paulik, L.; Vömel, H.; Chen, H.; Lu, D. In Situ Water Vapor and Ozone Measurements in Lhasa and Kunming during the Asian Summer Monsoon. Geophys. Res. Lett. 2012, 39, L19808. [Google Scholar] [CrossRef]
- Ma, D.; Bian, J.; Li, D.; Bai, Z.; Li, Q.; Zhang, J.; Wang, H.; Zheng, X.; Hurst, D.F.; Vömel, H. Mixing Characteristics within the Tropopause Transition Layer over the Asian Summer Monsoon Region Based on Ozone and Water Vapor Sounding Data. Atmos. Res. 2022, 271, 106093. [Google Scholar] [CrossRef]
- Hu, N.; Zhang, C.; Zhong, J.; Li, Y. Advances in Stratosphere Troposphere Exchange Research. Adv. Earth Sci. 2011, 26, 375–385. [Google Scholar]
- Robrecht, S.; Vogel, B.; Grooß, J.-U.; Rosenlof, K.; Thornberry, T.; Rollins, A.; Krämer, M.; Christensen, L.; Müller, R. Mechanism of Ozone Loss under Enhanced Water Vapour Conditions in the Mid-Latitude Lower Stratosphere in Summer. Atmos. Chem. Phys. 2019, 19, 5805–5833. [Google Scholar] [CrossRef]
- Su, H.; Read, W.G.; Jiang, J.H.; Waters, J.W.; Wu, D.L.; Fetzer, E.J. Enhanced Positive Water Vapor Feedback Associated with Tropical Deep Convection: New Evidence from Aura MLS. Geophys. Res. Lett. 2006, 33, L05709. [Google Scholar] [CrossRef]
- Su, H.; Wu, L.; Zhai, C.; Jiang, J.H.; Neelin, J.D.; Yung, Y.L. Observed Tightening of Tropical Ascent in Recent Decades and Linkage to Regional Precipitation Changes. Geophys. Res. Lett. 2020, 47, e2019GL085809. [Google Scholar] [CrossRef]
- Xie, F.; Tian, W.; Zhou, X.; Zhang, J.; Xia, Y.; Lu, J. Increase in Lower Stratospheric Water Vapor in the Past 100 Years Related to Tropical Atlantic Warming. Geophys. Res. Lett. 2020, 47, e2020GL090539. [Google Scholar] [CrossRef]
- Gettelman, A.; Randel, W.J.; Massie, S.; Wu, F.; Read, W.G.; Russell, J.M. El Niño as a Natural Experiment for Studying the Tropical Tropopause Region. J. Clim. 2001, 14, 3375–3392. [Google Scholar] [CrossRef]
- Scaife, A.A.; Butchart, N.; Jackson, D.R.; Swinbank, R. Can Changes in ENSO Activity Help to Explain Increasing Stratospheric Water Vapor? Geophys. Res. Lett. 2003, 30, 1880. [Google Scholar] [CrossRef]
- Xie, F.; Li, J.; Tian, W.; Feng, J.; Huo, Y. Signals of El Niño Modoki in the Tropical Tropopause Layer and Stratosphere. Atmos. Chem. Phys. 2012, 12, 5259–5273. [Google Scholar] [CrossRef]
- Huang, G.; Hu, K.; Xie, S.-P. Strengthening of Tropical Indian Ocean Teleconnection to the Northwest Pacific since the Mid-1970s: An Atmospheric GCM Study. J. Clim. 2010, 23, 5294–5304. [Google Scholar] [CrossRef]
- Xie, S.P.; Du, Y.; Huang, G.; Zheng, X.T.; Tokinaga, H.; Hu, K.; Liu, Q. Decadal Shift in El Niño Influences on Indo–Western Pacific and East Asian Climate in the 1970s. J. Clim. 2010, 23, 3352–3368. [Google Scholar] [CrossRef]
- Li, C.; Mu, M. The Dipole in the Equatorial Indian Ocean and Its Impacts on Climate. Chin. J. Atmos. Sci. 2001, 25, 433–443. [Google Scholar] [CrossRef]
- Zhou, N.; Yu, Y.; Qian, Y. Simulations of the 100-hPa South Asian High and Precipitation over East Asia with IPCC Coupled GCMs | SpringerLink. Adv. Atmos. Sci. 2006, 23, 375–390. [Google Scholar] [CrossRef]
- Zhang, P.; Song, Y.; Kousky, V.E. South Asian High and Asian-Pacific-American Climate Teleconnection. Adv. Atmos. Sci. 2005, 22, 915–923. [Google Scholar] [CrossRef]
- Zhu, L.; Zuo, H.; Li, Q.; Chen, B.; Wang, L. Characteristics of Climate Change of South Asia High in Summer and Its Impact on Precipitation in Eastern China. Plateau Meteorol. 2010, 29, 671–679. [Google Scholar]
- Ge, J.; Geng, X.; Zhang, Y.; Feng, D.; Liu, H.; Wang, C. Impact of the Springtime Tropical North Atlantic SST on the South Asian High. Clim. Dyn. 2023, 61, 4159–4172. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Daggupaty, S.M.; Fein, J.; Kanamitsu, M.; Lee, J.D. Tibetan High and Upper Tropospheric Tropical Circulations during Northern Summer. Bull. Am. Meteorol. Soc. 1973, 54, 1234–1250. [Google Scholar] [CrossRef]
- Yang, K.; Cai, W.; Huang, G.; Hu, K.; Ng, B.; Wang, G. Increased Variability of the Western Pacific Subtropical High under Greenhouse Warming. Proc. Natl. Acad. Sci. USA 2022, 119, e2120335119. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chao, L.; Tian, H.; Tu, X.; Jiang, J.; Shen, K. Comparison of the Impacts of Sea Surface Temperature in the Western Pacific and Indian Ocean on the Asian Summer Monsoon Anticyclone and Water Vapor in the Upper Troposphere. Remote Sens. 2024, 16, 2922. https://doi.org/10.3390/rs16162922
Chao L, Tian H, Tu X, Jiang J, Shen K. Comparison of the Impacts of Sea Surface Temperature in the Western Pacific and Indian Ocean on the Asian Summer Monsoon Anticyclone and Water Vapor in the Upper Troposphere. Remote Sensing. 2024; 16(16):2922. https://doi.org/10.3390/rs16162922
Chicago/Turabian StyleChao, Luyao, Hongying Tian, Xiaoxu Tu, Jiaying Jiang, and Kailong Shen. 2024. "Comparison of the Impacts of Sea Surface Temperature in the Western Pacific and Indian Ocean on the Asian Summer Monsoon Anticyclone and Water Vapor in the Upper Troposphere" Remote Sensing 16, no. 16: 2922. https://doi.org/10.3390/rs16162922
APA StyleChao, L., Tian, H., Tu, X., Jiang, J., & Shen, K. (2024). Comparison of the Impacts of Sea Surface Temperature in the Western Pacific and Indian Ocean on the Asian Summer Monsoon Anticyclone and Water Vapor in the Upper Troposphere. Remote Sensing, 16(16), 2922. https://doi.org/10.3390/rs16162922