Fourteen-Year Record (2000–2013) of the Spatial and Temporal Dynamics of Floating Algae Blooms in Lake Chaohu, Observed from Time Series of MODIS Images
Abstract
:1. Introduction
2. Methods
2.1. MODIS Data Acquisition and Processing
2.2. FAI Algorithm
2.3. Floating Algal Bloom Coverage Algorithm
2.4. Analysis
2.5. In Situ Data Acquisition
3. Results
3.1. Time Series of Floating Algal Blooms
3.2. Floating Algal Bloom Frequency
Year | East Lake | Middle Lake | West Lake | Lake Chaohu | ||||
---|---|---|---|---|---|---|---|---|
Number of Images | Percent of Images | Number of Images | Percent of Images | Number of Images | Percent of Images | Number of Images | Percent of Images | |
2000 | 2 | 1.6 | 7 | 5.7 | 48 | 39.3 | 8 | 6.6 |
2001 | 16 | 10.2 | 17 | 10.8 | 48 | 30.6 | 22 | 14.0 |
2002 | 16 | 9.8 | 23 | 14.0 | 35 | 21.3 | 25 | 15.2 |
2003 | 15 | 9.8 | 23 | 15.0 | 47 | 30.7 | 22 | 14.4 |
2004 | 17 | 9.3 | 17 | 9.3 | 57 | 31.1 | 24 | 13.1 |
2005 | 19 | 11.7 | 22 | 13.5 | 58 | 35.6 | 30 | 18.4 |
2006 | 22 | 14.2 | 19 | 12.3 | 62 | 40.0 | 29 | 18.7 |
2007 | 27 | 17.0 | 44 | 27.7 | 87 | 54.7 | 51 | 32.1 |
2008 | 36 | 20.9 | 38 | 22.1 | 73 | 42.4 | 48 | 27.9 |
2009 | 27 | 18.5 | 29 | 19.9 | 62 | 42.5 | 39 | 26.7 |
2010 | 19 | 11.7 | 28 | 17.2 | 49 | 30.1 | 36 | 22.1 |
2011 | 31 | 19.3 | 32 | 19.9 | 47 | 29.2 | 36 | 22.4 |
2012 | 33 | 19.9 | 28 | 16.9 | 70 | 42.2 | 41 | 24.7 |
2013 | 23 | 14.1 | 21 | 12.9 | 56 | 34.4 | 29 | 17.8 |
Year | East Lake | Middle Lake | West Lake | Lake Chaohu | ||||
---|---|---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | Mean | Standard Deviation | |
2000 | 11.25 | 11.02 | 20.92 | 23.03 | 58.44 | 42.42 | 69.30 | 55.46 |
2001 | 27.88 | 23.69 | 27.66 | 27.40 | 67.29 | 64.28 | 103.64 | 76.64 |
2002 | 18.45 | 22.43 | 20.73 | 22.99 | 51.58 | 62.50 | 73.14 | 78.62 |
2003 | 29.60 | 36.84 | 29.07 | 39.63 | 70.00 | 64.72 | 107.56 | 101.96 |
2004 | 30.04 | 25.47 | 39.62 | 48.21 | 87.66 | 56.50 | 126.55 | 90.90 |
2005 | 51.70 | 64.16 | 52.19 | 65.14 | 82.00 | 56.50 | 168.34 | 163.07 |
2006 | 37.71 | 32.50 | 36.16 | 29.69 | 82.56 | 55.39 | 139.26 | 98.85 |
2007 | 49.93 | 37.16 | 45.05 | 27.18 | 89.03 | 48.82 | 158.90 | 94.53 |
2008 | 58.71 | 48.95 | 42.43 | 22.49 | 98.71 | 59.91 | 166.93 | 92.93 |
2009 | 43.66 | 32.75 | 30.97 | 27.84 | 72.75 | 61.28 | 130.02 | 92.19 |
2010 | 38.45 | 45.08 | 35.08 | 35.56 | 69.08 | 64.97 | 114.21 | 97.05 |
2011 | 68.48 | 63.24 | 54.04 | 45.78 | 75.81 | 66.23 | 181.07 | 163.12 |
2012 | 73.50 | 57.35 | 60.46 | 32.34 | 96.05 | 74.50 | 212.77 | 135.83 |
2013 | 41.63 | 37.08 | 47.01 | 45.39 | 69.89 | 56.18 | 148.55 | 111.42 |
Year | East Lake | Middle Lake | West Lake | Lake Chaohu | ||||
---|---|---|---|---|---|---|---|---|
Initiation Day | Duration | Initiation Day | Duration | Initiation Day | Duration | Initiation Day | Duration | |
2000 | 106 | 155 | 106 | 173 | 106 | 176 | 106 | 165 |
2001 | 131 | 125 | 95 | 161 | 61 | 295 | 115 | 279 |
2002 | 151 | 118 | 150 | 245 | 76 | 193 | 102 | 145 |
2003 | 155 | 111 | 140 | 126 | 105 | 291 | 145 | 130 |
2004 | 115 | 236 | 115 | 236 | 69 | 282 | 119 | 232 |
2005 | 69 | 260 | 117 | 147 | 67 | 267 | 69 | 234 |
2006 | 65 | 332 | 65 | 332 | 65 | 332 | 65 | 301 |
2007 | 54 | 319 | 45 | 328 | 45 | 328 | 45 | 328 |
2008 | 85 | 216 | 85 | 234 | 61 | 295 | 98 | 212 |
2009 | 68 | 242 | 69 | 235 | 68 | 307 | 68 | 242 |
2010 | 130 | 257 | 53 | 334 | 53 | 309 | 53 | 230 |
2011 | 70 | 276 | 99 | 292 | 70 | 288 | 70 | 261 |
2012 | 70 | 264 | 70 | 274 | 57 | 277 | 70 | 274 |
2013 | 101 | 258 | 101 | 258 | 66 | 293 | 101 | 258 |
3.3. Floating Bloom Initiation and Duration
3.4. Bloom Frequency
4. Discussion
4.1. Environmental Drivers of Inter-Annual Surface Bloom Dynamics
Initial Date | Duration | ΔTmean | ΔTmax | ΔTmin | ΔP | ΔW | ΔS | ||
---|---|---|---|---|---|---|---|---|---|
Initial date | r | 1.000 | −0.665 ** | −0.095 | 0.531 | −0.534 * | 0.074 | 0.597 * | −0.318 |
Duration | r | −0.665 ** | 1.000 | 0.243 | −0.538 * | 0.701 ** | −0.497 | −0.476 | 0.464 |
Significant days | r | −0.640 * | 0.564 * | 0.007 | −0.495 | 0.530 | −0.065 | −0.772 ** | 0.332 |
Mean bloom area *** | r | −0.486 | 0.583 * | −0.368 | −0.464 | 0.308 | −0.203 | −0.796 ** | 0.592 |
Year | Julian Day of Initial Time | Air Temperature (°C) | Winter Average Temperature (°C) | Effective Temperature (°C) * | ||
---|---|---|---|---|---|---|
One Week before Initial Time | Two Weeks before Initial Time | One Month before Initial Time | ||||
2000 | 106 | 11.7 | 4.4 | 54.9 | 97 | 181.4 |
2001 | 115 | 18.6 | 4.7 | 38.2 | 81.7 | 139.8 |
2002 | 102 | 12 | 6.3 | 52.8 | 120.7 | 243.7 |
2003 | 145 | 22.4 | 4.6 | 96.1 | 177.7 | 341.4 |
2004 | 119 | 18.4 | 5.3 | 68.5 | 140.9 | 246.4 |
2005 | 69 | 16.8 | 3.3 | 1.2 | –24 | –133.6 |
2006 | 65 | 14.9 | 3.8 | –18.8 | –33.2 | –109.7 |
2007 | 45 | 8.5 | 5.7 | 2.6 | -0.9 | –84.7 |
2008 | 98 | 19.1 | 3.4 | 43 | 75.4 | 138.9 |
2009 | 68 | 12.2 | 5.3 | –23.1 | –55.5 | –54.1 |
2010 | 53 | 11.4 | 4.8 | –35.3 | –77.6 | –125.2 |
2011 | 70 | 10.2 | 4.1 | –4.5 | –28.7 | –103.4 |
2012 | 70 | 6.2 | 3.5 | –22.9 | –54.2 | –135.1 |
2013 | 101 | 14.9 | 3.9 | 39.6 | 80.4 | 108 |
4.2. Environmental Drivers of Monthly Surface Bloom Dynamics
TN (mg/L) | TP (mg/L) | Transparency (cm) | TN/TP | ||
---|---|---|---|---|---|
Maximum algal bloom area (km2) | Pearson Correlation | −0.503 | 0.229 | 0.098 | −0.512 |
Sig. (2-tailed) | 0.002 | 0.192 | 0.582 | 0.002 | |
N | 34 | 34 | 34 | 34 |
4.3. Environmental Drivers of Daily Surface Bloom Dynamics
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination of Earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef]
- Callisto, M.; Molozzi, J.; Barbosa, J.L.E. Eutrophication: Causes, Consequences and Control; Ansari, A.A., Gill, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Guo, L. Doing battle with the green monster of Taihu Lake. Science 2007, 317, 1166. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.Q.; Fang, J.Y.; Miao, S.L.; Gu, B.; Tao, S.; Peng, C.H.; Tang, Z.Y. The 7-decade degradation of a large freshwater lake in central Yangtze River, China. Environ. Sci. Tech. 2005, 39, 431–436. [Google Scholar] [CrossRef]
- SEPA. Annual Chinese Environmental Quality Report; China Environmental Publishing: Beijing, China, 2013. [Google Scholar]
- Duan, H.; Ma, R.; Xu, X.; Kong, F.; Zhang, S.; Kong, W.; Hao, J.; Shang, L. Two-decade reconstruction of algal blooms in China’s Lake Taihu. Environ. Sci. Technol. 2009, 43, 3522–3528. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Shi, D.; Shi, M.; Li, R.; Song, L.; Fang, H.; Yu, G.; Li, X.; Du, G. Formation of cyanobacterial blooms in Lake Chaohu and the photosynthesis of dominant species hypothesis. Acta Ecol. Sin. 2011, 31, 2968–2977. [Google Scholar]
- Dai, G.; Li, J.; Li, L.; Song, L. The spatio-temporal pattern of phytoplankton in the north basin of Lake Dianchi and related environmental factors. Acta Hydrobiol. Sin. 2012, 36, 946–957. (In Chinese) [Google Scholar] [CrossRef]
- Xie, P. Reading about the Histories of Cyanobacteria, Eutrophication and Geological Evolution in Lake Chaohu; Science Press: Beijing, China, 2009. [Google Scholar]
- Tu, Q.Y.; Gu, D.X.; Yi, C.Q.; Xu., Z.R.; Han, G.Z. The Researches on the Lake Chaohu Eutrophication; Publisher of University of Science and Technology of China: Hefei, China, 1990. (In Chinese) [Google Scholar]
- Meng, R.; Liu, Z. An evaluation of water pollution and eutrophication of the Chaohu Lake by means of phytoplankton. Acta Hydrobiol. Sin. 1986, 12, 13–26. (In Chinese) [Google Scholar]
- Deng, D.G. Ecological Studies on the Effects of Eutrophication on Plankton Communities in a Large Shallow Lake, Lake Chahu. Ph.D. Thesis, Institude of Hydrobiology, Chinese Acadamy of Sciences, Wuchang, China, 2004. [Google Scholar]
- Deng, D.G.; Xie, P.; Zhou, Q.; Yang, H.; Guo, L.-G. Studies on temporal and spatial variations of phytoplankton in Lake Chaohu. J. Integr. Plant Biol. 2007, 49, 409–418. [Google Scholar] [CrossRef]
- Jiang, Y.-J.; He, W.; Liu, W.-X.; Qin, N.; Ouyang, H.-L.; Wang, Q.-M.; Kong, X.-Z.; He, Q.-S.; Yang, C.; Yang, B.; et al. The seasonal and spatial variations of phytoplankton community and their correlation with environmental factors in a large eutrophic Chinese lake (Lake Chaohu). Ecol. Indic. 2014, 40, 58–67. [Google Scholar] [CrossRef]
- Xie, X.; Qian, X.; Qian, Y.; Zhang, Y.; Tian, F. Numerical simulation of hydrodynamics and water quality for water transfer from Yangtze River to Chaohu Lake. China Environ. Sci. 2008, 28, 1133–1137. (In Chinese) [Google Scholar]
- Xie, X.; Qian, X.; Zhang, Y.; Qian, Y.; Tian, F. Effect on Chaohu Lake water environment of water transfer from Yangtze River to Chaohu Lake. Res. Environ. Sci. 2009, 22, 897–891. (In Chinese) [Google Scholar]
- Gao, C.; Zhang, T. Eutrophication in Chinese context: Understanding various physical and socio-economic aspects. Ambio 2010, 39, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Kahru, M.; Leppanen, J.M.; Rud, O.; Savchuk, O.P. Cyanobacteria blooms in the gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar. Ecol.-Prog. Ser. 2000, 207, 13–18. [Google Scholar] [CrossRef]
- Kutser, T. Quantitative detection of chlorophyll in cyanobacterial blooms by satellite remote sensing. Limnol. Oceanogr. 2004, 49, 2179–2189. [Google Scholar] [CrossRef]
- Gower, J.F.R. Red tide monitoring using AVHRR HRPT imagery from a local receiver. Remote Sens. Environ. 1994, 48, 309–318. [Google Scholar] [CrossRef]
- Le, C.; Li, Y.; Zha, Y.; Sun, D.; Huang, C.; Lu, H. A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China. Remote Sens. Environ. 2009, 113, 1175–1182. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Wynne, T.T.; Baker, D.B.; Fahnenstiel, G.L. Interannual variability of cyanobacterial blooms in Lake Erie. PLOS ONE 2012, 7, e42444. [Google Scholar] [CrossRef] [PubMed]
- Kahru, M.; Elmgren, R. Multidecadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 2014, 11, 3619–3633. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Duan, H.; Loiselle, S.A.; Xu, J.; Ma, M. A novel algorithm to estimate algal bloom coverage to subpixel resolution in Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3060–3068. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate resolution imaging spectroradiometer (MODIS) observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res. Oceans 2010, 115, C04002. [Google Scholar] [CrossRef]
- Hu, C.; Lee, Z.; Ma, R.; Yu, K.; Li, D.; Shang, S. Moderate Resolution Imaging Spectroradiometer (MODIS) Observations of Cyanobacteria Blooms in Taihu Lake, China; Marine Science Faculty Publications; Paper 40; University of South Florida: Tampa, FL, USA, 2010; Available online: http://scholarcommons.usf.edu/msc_facpub/40 (accessed on 1 April 2010).
- Hu, C.; Chen, Z.; Clayton, T.D.; Swarzenski, P.; Brock, J.C.; Muller-Karger, F.E. Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: Initial results from Tampa Bay, Fl. Remote Sens. Environ. 2004, 93, 423–441. [Google Scholar] [CrossRef]
- George, D.G.; Edward, R.W. The effect of wind on the distribution of chlorophyll-a and crustacean plankton in a shallow eutrophic reservoir. J. Appl. Ecol. 1976, 13, 667–690. [Google Scholar] [CrossRef]
- Hunter, P.D.; Tyler, A.N.; Willby, N.J.; Gilvear, D.J. The spatial dynamics of vertical migration by microcystis aeruginosa in a eutrophic shallow lake: A case study using high spatial resolution time-series airborne remote sensing. Limnol. Oceanogr 2008, 53, 2391–2406. [Google Scholar] [CrossRef]
- Cao, H.S.; Kong, F.X.; Luo, L.C.; Shi, X.L.; Yang, Z.; Zhang, X.-F.; Tao, Y. Effects of wind and wind-induced waves on vertical phytoplankton distribution and surface blooms of microcystis aeruginosa in Lake Taihu. J. Freshw. Ecol. 2006, 21, 231–238. [Google Scholar] [CrossRef]
- Cao, H.; Tao, Y.; Kong, F.; Yang, Z. Relationship between temperature and cyanobacterial recruitment from sediments in laboratory and field studies. J. Freshw. Ecol. 2008, 23, 405–412. [Google Scholar] [CrossRef]
- Wang, Q.; Li, C.; Wang, S.; Zhao, X. Analysis on temporal variation characteristics of entrophication in Chao Lake. J. Anhui Agric. Sci. 2011, 39, 19324. (In Chinese) [Google Scholar]
- Huang, M. Study on comprehensive assessment method for water quality eutrophication in Chaohu Lake. J. West Anhui University 2012, 28, 23–25. (In Chinese) [Google Scholar]
- Rong, J.; Wang, L. Application of the exponential smoothing law—Markov model in prediction of water quality of Chaohu Lake. J. Water Resour. Water Eng. 2013, 24, 98–102. (In Chinese) [Google Scholar]
- Zhu, Y.; Wang, F. Water quality in Chaohu Lake watershed and the its envirnmental objects. Envrion. Monit. Manage. Technol. 2004, 16, 22–24. (In Chinese) [Google Scholar]
- Zou, Q.; Zhou, L.; Wu, S. Integrated assessment on water quality of Lake Chaohu. Water Conser. Fishery 2007, 27, 57–59. (In Chinese) [Google Scholar]
- Ebina, J.; Tsutsui, T.; Shirai, T. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Res. 1983, 17, 1721–1726. [Google Scholar] [CrossRef]
- Zhang, M.; Duan, H.; Shi, X.; Yu, Y.; Kong, F. Contributions of meteorology to the phenology of cyanobacterial blooms: Implications for future climate change. Water Res. 2012, 46, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Hallegraeff, G.M. A review of harmful algal blooms and their apparent global increase. Phycologia 1993, 32, 79–99. [Google Scholar] [CrossRef]
- Qin, B.Q.; Zhu, G.W.; Gao, G.; Zhang, Y.L.; Li, W.; Paerl, H.; Carmichael, W. A drinking water crisis in Lake Taihu, China: Linkage to climatic variability and lake management. Environ. Manage. 2010, 45, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Kong, F.; Hu, W.; Gu, X.; Yang, G.; Fan, C.; Chen, K. On the cause of cyanophyta bloom and pollution in water intake area and emergency measures in meiliang bay, Lake Taihu in 2007. J. Lake Sci. 2007, 19, 357–358. (In Chinese) [Google Scholar]
- Ren, J.; Shang, Z.; Jiang, M.; Qin, M.; Jiang, W. Meteorological condition of blue-green algae fast growth of Lake Taihu in 2007. J. Anhui Agric. Sci. 2008, 36, 11874–11875. (In Chinese) [Google Scholar]
- Wynne, T.T.; Stumpf, R.P.; Tomlinson, M.C.; Dyble, J. Characterizing a cyanobacterial bloom in western Lake Erie using satellite imagery and meteorological data. Limnol. Oceanogr. 2010, 55, 2025–2036. [Google Scholar] [CrossRef]
- Walsby, A.E.; Hayes, P.K.; Boje, R.; Stal, L.J. The selective advantadge of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytol. 1997, 136, 407–417. [Google Scholar] [CrossRef]
- Klausmeier, C.A.; Litchman, E. Algal games: The vertical distribution of phytoplankton in poorly mixed water columns. Limnol. Oceanogr. 2001, 46, 1998–2007. [Google Scholar] [CrossRef]
- Tilman, D. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. Systemat. 1982, 13, 349–372. [Google Scholar] [CrossRef]
- Fujimoto, N.; Sudo, R.; Sugiura, N.; Inamori, Y. Nutrient-limited growth of microcystis aeruginosa and phormidium tenue and competition under various N:P supply ratios and temperatures. Limnol. Oceanogr. 1997, 42, 250–256. [Google Scholar] [CrossRef]
- Sellner, K.G. Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol. Oceanogr. 1997, 42, 1089–1104. [Google Scholar] [CrossRef]
- Paerl, H.W.; Huisman, J. Blooms like it hot. Science 2008, 320. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Huisman, J. Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. Environ. Microbiol. Rep. 2009, 1, 27–37. [Google Scholar] [CrossRef] [PubMed]
- JÖHnk, K.D.; Huisman, J.E.F.; Sharples, J.; Sommeijer, B.E.N.; Visser, P.M.; Stroom, J.M. Summer heatwaves promote blooms of harmful cyanobacteria. Global Chang. Biol. 2008, 14, 495–512. [Google Scholar] [CrossRef]
- Webster, I.T. Effect of wind on the distribution of phytoplankton cells in lakes. Limnol. Oceanogr 1990, 35, 989–1001. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, F.; Wu, X.; Xing, P. Different photochemical responses of phytoplankters from the large shallow taihu lake of subtropical China in relation to light and mixing. Hydrobiologia 2008, 603, 267–278. [Google Scholar] [CrossRef]
- Dai, A.; Deser, C. Diurnal and semidiurnal variations in global surface wind and divergence fields. J. Geophys. Res. 1999, 104, 109–131. [Google Scholar] [CrossRef]
- Oliver, R.L.; Ganf, G.G. Freshwater blooms. In The Ecology of Cyanobacteria; Whitton, B.A., Potts, M., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 149–194. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Ma, R.; Zhang, M.; Duan, H.; Loiselle, S.; Xu, J. Fourteen-Year Record (2000–2013) of the Spatial and Temporal Dynamics of Floating Algae Blooms in Lake Chaohu, Observed from Time Series of MODIS Images. Remote Sens. 2015, 7, 10523-10542. https://doi.org/10.3390/rs70810523
Zhang Y, Ma R, Zhang M, Duan H, Loiselle S, Xu J. Fourteen-Year Record (2000–2013) of the Spatial and Temporal Dynamics of Floating Algae Blooms in Lake Chaohu, Observed from Time Series of MODIS Images. Remote Sensing. 2015; 7(8):10523-10542. https://doi.org/10.3390/rs70810523
Chicago/Turabian StyleZhang, Yuchao, Ronghua Ma, Min Zhang, Hongtao Duan, Steven Loiselle, and Jinduo Xu. 2015. "Fourteen-Year Record (2000–2013) of the Spatial and Temporal Dynamics of Floating Algae Blooms in Lake Chaohu, Observed from Time Series of MODIS Images" Remote Sensing 7, no. 8: 10523-10542. https://doi.org/10.3390/rs70810523
APA StyleZhang, Y., Ma, R., Zhang, M., Duan, H., Loiselle, S., & Xu, J. (2015). Fourteen-Year Record (2000–2013) of the Spatial and Temporal Dynamics of Floating Algae Blooms in Lake Chaohu, Observed from Time Series of MODIS Images. Remote Sensing, 7(8), 10523-10542. https://doi.org/10.3390/rs70810523