Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests
Abstract
:1. Introduction
2. Materials and Methods
Code | CORINE Level 3 | Recoded | Hybrid CORINE Level 2/3 |
---|---|---|---|
111 | Continuous urban fabric | 111 | Continuous urban fabric |
112 | Discontinuous urban fabric | 112 | Discontinuous urban fabric |
121 | Industrial or commercial units | 120 | Industrial, commercial and transport units |
122 | Road and rail networks and associated land | ||
123 | Port areas | ||
124 | Airports | ||
131 | Mineral extraction sites | 130 | Mine, dump and construction sites |
132 | Dump sites | ||
133 | Construction sites | ||
141 | Green urban areas | 140 | Artificial, non-agricultural vegetated areas |
142 | Sport and leisure facilities | ||
211 | Non-irrigated arable land | 211 | Non-irrigated arable land |
212 | Permanently irrigated land | 212 | Permanently irrigated land |
213 | Rice fields | 213 | Rice fields |
221 | Vineyards | 220 | Permanent crops |
222 | Fruit trees and berry plantations | ||
223 | Olive groves | ||
231 | Pastures | 230 | Pastures |
241 | Annual crops associated with permanent crops | 240 | Heterogeneous agricultural areas |
242 | Complex cultivation patterns | ||
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | ||
244 | Agro-forestry areas | ||
311 | Broad-leaved forest | 311 | Broad-leaved forest |
312 | Coniferous forest | 312 | Coniferous forest |
313 | Mixed forest | 313 | Mixed forest |
321 | Natural grasslands | 321 | Natural grasslands |
322 | Moors and heathland | 322 | Moors and heathland |
323 | Sclerophyllous vegetation | 323 | Sclerophyllous vegetation |
324 | Transitional woodland-shrub | 324 | Transitional woodland-shrub |
331 | Beaches, dunes, sands | 331 | Beaches, dunes, sands |
332 | Bare rocks | 332 | Bare rocks |
333 | Sparsely vegetated areas | 333 | Sparsely vegetated areas |
334 | Burnt areas | 334 | Burnt areas |
335 | Glaciers and perpetual snow | 335 | Glaciers and perpetual snow |
411 | Inland marshes | 410 | Inland wetlands |
412 | Peat bogs | ||
421 | Salt marshes | 420 | Maritime wetlands |
422 | Salines | ||
423 | Intertidal flats | ||
511 | Water courses | 510 | Inland waters |
512 | Water bodies | ||
521 | Coastal lagoons | 520 | Marine waters |
522 | Estuaries | ||
523 | Sea and ocean |
Class | Description | Number of Pixels in the CLC 2006 Map | Number of Training Pixels |
---|---|---|---|
111 | Continuous urban fabric | 543 | 119 |
112 | Discontinuous urban fabric | 50,613 | 8,832 |
120 | Industrial, commercial and transport units | 9,117 | 1,143 |
130 | Mine, dump and construction sites | 1,641 | 68 |
140 | Artificial, non-agricultural vegetated areas | 3,574 | 271 |
211 | Non-irrigated arable land | 431,518 | 20,000 |
220 | Permanent crops | 1,915 | 395 |
230 | Pastures | 80,113 | 14,972 |
240 | Heterogeneous agricultural areas | 38,663 | 6,549 |
311 | Broad-leaved forest | 102,895 | 20,000 |
312 | Coniferous forest | 202,476 | 20,000 |
313 | Mixed forest | 58,720 | 13,473 |
321 | Natural grasslands | 11,356 | 5,145 |
322 | Moors and heathland | 247 | 12 |
324 | Transitional woodland-shrub | 1,431 | 132 |
410 | Inland wetlands | 395 | 32 |
510 | Inland waters | 2,748 | 334 |
3. Results
3.1. Sentinel-1A Radiometric Signatures and Information Content of the Texture and SRTM Bands
3.2. Classification Results
3.3. Diagnostic Analysis of the RFTEXSRTM Classifier
Class | 111 | 112 | 120 | 130 | 140 | 211 | 220 | 230 | 240 | 311 | 312 | 313 | 321 | 322 | 324 | 410 | 510 | Class.Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111 | 15 | 99 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87% |
112 | 14 | 5161 | 41 | 0 | 1 | 717 | 0 | 292 | 77 | 1244 | 843 | 418 | 19 | 0 | 1 | 0 | 4 | 42% |
120 | 1 | 633 | 37 | 0 | 0 | 185 | 0 | 73 | 17 | 74 | 86 | 22 | 6 | 0 | 0 | 0 | 9 | 97% |
130 | 0 | 3 | 0 | 13 | 0 | 13 | 0 | 13 | 1 | 8 | 9 | 7 | 1 | 0 | 0 | 0 | 0 | 81% |
140 | 0 | 67 | 1 | 0 | 5 | 47 | 0 | 15 | 3 | 47 | 64 | 20 | 1 | 0 | 0 | 0 | 1 | 98% |
211 | 0 | 410 | 23 | 1 | 1 | 14,111 | 3 | 2189 | 243 | 572 | 1796 | 229 | 396 | 0 | 0 | 0 | 26 | 29% |
220 | 0 | 6 | 0 | 0 | 0 | 191 | 2 | 76 | 9 | 4 | 95 | 4 | 8 | 0 | 0 | 0 | 0 | 99% |
230 | 0 | 385 | 16 | 0 | 0 | 3033 | 1 | 6060 | 385 | 905 | 2892 | 472 | 810 | 0 | 0 | 0 | 13 | 60% |
240 | 0 | 273 | 9 | 0 | 1 | 1704 | 5 | 1625 | 169 | 676 | 1544 | 328 | 211 | 0 | 0 | 0 | 4 | 97% |
311 | 0 | 624 | 1 | 0 | 0 | 625 | 3 | 777 | 147 | 12,333 | 2969 | 2421 | 96 | 0 | 1 | 0 | 3 | 38% |
312 | 1 | 523 | 5 | 0 | 0 | 1145 | 4 | 1942 | 273 | 2222 | 11,399 | 2266 | 215 | 0 | 0 | 0 | 5 | 43% |
313 | 0 | 363 | 3 | 1 | 1 | 466 | 0 | 671 | 132 | 4442 | 4498 | 2819 | 76 | 0 | 0 | 0 | 1 | 79% |
321 | 0 | 17 | 1 | 0 | 0 | 910 | 2 | 2031 | 92 | 223 | 1061 | 143 | 664 | 0 | 0 | 0 | 1 | 87% |
322 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 5 | 1 | 1 | 0 | 0 | 0 | 0 | 100% |
324 | 0 | 3 | 0 | 0 | 0 | 4 | 0 | 4 | 0 | 56 | 35 | 30 | 0 | 0 | 0 | 0 | 0 | 100% |
410 | 0 | 3 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 9 | 10 | 3 | 1 | 0 | 0 | 0 | 4 | 100% |
510 | 0 | 1 | 8 | 0 | 0 | 100 | 0 | 30 | 2 | 5 | 10 | 3 | 13 | 0 | 0 | 1 | 161 | 52% |
Class | 111 | 112 | 120 | 130 | 140 | 211 | 220 | 230 | 240 | 311 | 312 | 313 | 321 | 322 | 324 | 410 | 510 | Class.Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111 | 15 | 99 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87% |
112 | 13 | 5173 | 36 | 0 | 1 | 712 | 1 | 273 | 68 | 1261 | 832 | 433 | 22 | 0 | 2 | 0 | 5 | 41% |
120 | 0 | 645 | 31 | 0 | 0 | 194 | 0 | 65 | 12 | 72 | 81 | 31 | 5 | 0 | 0 | 0 | 7 | 97% |
130 | 0 | 3 | 0 | 12 | 0 | 16 | 0 | 10 | 2 | 10 | 9 | 5 | 1 | 0 | 0 | 0 | 0 | 82% |
140 | 0 | 65 | 0 | 0 | 5 | 46 | 0 | 16 | 5 | 57 | 61 | 12 | 2 | 0 | 0 | 0 | 2 | 98% |
211 | 0 | 401 | 22 | 2 | 1 | 14,133 | 2 | 2204 | 256 | 602 | 1739 | 235 | 377 | 0 | 0 | 0 | 26 | 29% |
220 | 0 | 6 | 0 | 0 | 0 | 194 | 0 | 80 | 6 | 6 | 85 | 7 | 11 | 0 | 0 | 0 | 0 | 100% |
230 | 0 | 393 | 16 | 0 | 0 | 3030 | 3 | 6074 | 377 | 931 | 2871 | 472 | 792 | 0 | 0 | 0 | 13 | 59% |
240 | 0 | 288 | 11 | 0 | 1 | 1680 | 3 | 1650 | 158 | 655 | 1528 | 344 | 226 | 0 | 0 | 0 | 5 | 98% |
311 | 0 | 631 | 4 | 0 | 0 | 626 | 1 | 803 | 133 | 12,368 | 2951 | 2398 | 82 | 0 | 1 | 0 | 2 | 38% |
312 | 1 | 529 | 5 | 0 | 1 | 1126 | 2 | 1971 | 258 | 2254 | 11,333 | 2295 | 218 | 0 | 0 | 0 | 7 | 43% |
313 | 0 | 347 | 3 | 1 | 1 | 490 | 1 | 696 | 112 | 4496 | 4428 | 2833 | 62 | 0 | 0 | 0 | 3 | 79% |
321 | 0 | 22 | 1 | 0 | 0 | 904 | 1 | 2031 | 108 | 209 | 1058 | 139 | 669 | 0 | 0 | 0 | 3 | 87% |
322 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 7 | 0 | 1 | 0 | 0 | 0 | 0 | 100% |
324 | 0 | 3 | 0 | 0 | 0 | 5 | 0 | 2 | 0 | 60 | 36 | 26 | 0 | 0 | 0 | 0 | 0 | 100% |
410 | 0 | 4 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 8 | 9 | 3 | 1 | 0 | 0 | 0 | 4 | 100% |
510 | 0 | 2 | 6 | 0 | 0 | 95 | 0 | 39 | 1 | 3 | 11 | 3 | 8 | 0 | 0 | 1 | 165 | 51% |
Class | 111 | 112 | 120 | 130 | 140 | 211 | 220 | 230 | 240 | 311 | 312 | 313 | 321 | 322 | 324 | 410 | 510 | Class.Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111 | 47 | 70 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 61% |
112 | 15 | 6841 | 21 | 0 | 1 | 1105 | 3 | 276 | 80 | 379 | 51 | 41 | 19 | 0 | 0 | 0 | 0 | 23% |
120 | 1 | 596 | 263 | 0 | 0 | 216 | 0 | 54 | 3 | 5 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 77% |
130 | 0 | 2 | 0 | 19 | 0 | 14 | 0 | 6 | 1 | 16 | 8 | 2 | 0 | 0 | 0 | 0 | 0 | 72% |
140 | 0 | 77 | 0 | 0 | 27 | 48 | 0 | 35 | 11 | 44 | 17 | 7 | 4 | 0 | 0 | 0 | 1 | 90% |
211 | 0 | 583 | 8 | 0 | 2 | 16,905 | 11 | 1596 | 411 | 173 | 37 | 58 | 206 | 0 | 2 | 0 | 8 | 15% |
220 | 0 | 4 | 0 | 0 | 0 | 182 | 175 | 29 | 2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 56% |
230 | 0 | 273 | 5 | 0 | 4 | 1556 | 10 | 10,918 | 539 | 522 | 500 | 116 | 523 | 1 | 1 | 0 | 4 | 27% |
240 | 0 | 224 | 2 | 0 | 2 | 1209 | 0 | 2284 | 1752 | 507 | 231 | 156 | 181 | 0 | 0 | 1 | 0 | 73% |
311 | 0 | 114 | 0 | 0 | 2 | 135 | 0 | 561 | 145 | 14,287 | 2454 | 2252 | 38 | 0 | 12 | 0 | 0 | 29% |
312 | 0 | 16 | 0 | 1 | 1 | 47 | 0 | 585 | 97 | 1664 | 15,735 | 1757 | 96 | 0 | 0 | 0 | 1 | 21% |
313 | 0 | 42 | 0 | 0 | 0 | 95 | 0 | 387 | 155 | 3686 | 3477 | 5610 | 17 | 0 | 4 | 0 | 0 | 58% |
321 | 0 | 22 | 0 | 0 | 0 | 496 | 0 | 899 | 79 | 79 | 105 | 24 | 3440 | 0 | 0 | 1 | 0 | 33% |
322 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 7 | 0 | 0 | 3 | 0 | 0 | 0 | 75% |
324 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 10 | 2 | 74 | 6 | 20 | 4 | 0 | 14 | 0 | 0 | 89% |
410 | 0 | 8 | 0 | 0 | 0 | 10 | 0 | 5 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 5 | 1 | 84% |
510 | 0 | 2 | 0 | 0 | 0 | 77 | 0 | 7 | 0 | 1 | 1 | 0 | 3 | 0 | 0 | 0 | 243 | 27% |
Class | 111 | 112 | 120 | 130 | 140 | 211 | 220 | 230 | 240 | 311 | 312 | 313 | 321 | 322 | 324 | 410 | 510 | Class.Error |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
111 | 22 | 35 | 2 | 0 | 0 | 59 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82% |
112 | 9 | 3094 | 63 | 0 | 2 | 3947 | 26 | 942 | 262 | 220 | 45 | 30 | 182 | 0 | 1 | 0 | 9 | 65% |
120 | 4 | 147 | 289 | 0 | 0 | 553 | 4 | 93 | 13 | 19 | 0 | 4 | 16 | 0 | 0 | 1 | 0 | 75% |
130 | 0 | 2 | 0 | 13 | 0 | 11 | 0 | 6 | 4 | 22 | 7 | 1 | 2 | 0 | 0 | 0 | 0 | 81% |
140 | 0 | 29 | 0 | 0 | 22 | 96 | 2 | 58 | 15 | 25 | 13 | 7 | 4 | 0 | 0 | 0 | 0 | 92% |
211 | 20 | 1696 | 150 | 0 | 15 | 14,726 | 56 | 1634 | 552 | 616 | 26 | 73 | 414 | 0 | 3 | 2 | 17 | 26% |
220 | 0 | 22 | 3 | 0 | 0 | 153 | 180 | 24 | 4 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 54% |
230 | 0 | 423 | 25 | 0 | 2 | 1700 | 26 | 9323 | 831 | 1358 | 439 | 210 | 621 | 1 | 10 | 0 | 3 | 38% |
240 | 0 | 259 | 6 | 0 | 1 | 1021 | 2 | 1652 | 2140 | 876 | 154 | 177 | 255 | 0 | 1 | 5 | 0 | 67% |
311 | 0 | 121 | 4 | 3 | 8 | 517 | 1 | 1803 | 569 | 10,142 | 3425 | 3150 | 249 | 0 | 8 | 0 | 0 | 49% |
312 | 0 | 16 | 0 | 2 | 1 | 29 | 0 | 671 | 125 | 3414 | 13,528 | 2074 | 134 | 1 | 1 | 2 | 2 | 32% |
313 | 0 | 39 | 1 | 0 | 1 | 183 | 1 | 576 | 207 | 3714 | 3315 | 5400 | 33 | 0 | 3 | 0 | 0 | 60% |
321 | 0 | 125 | 7 | 0 | 1 | 771 | 0 | 678 | 172 | 246 | 109 | 30 | 3004 | 0 | 0 | 1 | 1 | 42% |
322 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 5 | 0 | 0 | 5 | 0 | 0 | 0 | 58% |
324 | 0 | 3 | 0 | 0 | 0 | 9 | 0 | 52 | 6 | 53 | 2 | 3 | 2 | 0 | 2 | 0 | 0 | 98% |
410 | 0 | 6 | 1 | 0 | 0 | 9 | 0 | 1 | 5 | 0 | 1 | 0 | 1 | 0 | 0 | 8 | 0 | 75% |
510 | 0 | 22 | 0 | 0 | 0 | 120 | 1 | 12 | 0 | 0 | 0 | 0 | 7 | 0 | 0 | 0 | 172 | 49% |
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Feranec, J.; Jaffrain, G.; Soukup, T.; Hazeu, G. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl. Geogr. 2010, 30, 19–35. [Google Scholar] [CrossRef]
- Kallimanis, A.S.; Koutsias, N. Geographical patterns of Corine land cover diversity across Europe: The effect of grain size and thematic resolution. Prog. Phys. Geogr. 2013, 37, 161–177. [Google Scholar] [CrossRef]
- Van der Sande, C.; De Jong, S.; De Roo, A. A segmentation and classification approach of IKONOS-2 imagery for land cover mapping to assist flood risk and flood damage assessment. Int. J. Appl. Earth Obs. Geoinf. 2003, 4, 217–229. [Google Scholar] [CrossRef]
- Koellner, T.; Scholz, R.W. Assessment of land use impacts on the natural environment. Int. J. Life Cycle Assessment 2008, 13, 32–48. [Google Scholar]
- Koellner, T.; de Baan, L.; Beck, T.; Brandão, M.; Civit, B.; Goedkoop, M.; Margni, M.; i Canals, L.M.; Müller-Wenk, R.; Weidema, B.; et al. Principles for life cycle inventories of land use on a global scale. Int. J. Life Cycle Assessment 2013, 18, 1203–1215. [Google Scholar] [CrossRef]
- Falcucci, A.; Maiorano, L.; Boitani, L. Changes in land-use/land-cover patterns in Italy and their implications for biodiversity conservation. Landsc. Ecol. 2007, 22, 617–631. [Google Scholar] [CrossRef]
- Gallego, F.J.; Batista, F.; Rocha, C.; Mubareka, S. Disaggregating population density of the European Union with CORINE land cover. Int. J. Geogr. Inf. Sci. 2011, 25, 2051–2069. [Google Scholar] [CrossRef]
- Genovese, G.; Vignolles, C.; Nègre, T.; Passera, G. A methodology for a combined use of normalised difference vegetation index and CORINE land cover data for crop yield monitoring and forecasting. A case study on Spain. Agronomie 2001, 21, 91–111. [Google Scholar] [CrossRef]
- Stathopoulou, M.; Cartalis, C. Daytime urban heat islands from Landsat ETM+ and CORINE land cover data: An application to major cities in Greece. Sol. Energy 2007, 81, 358–368. [Google Scholar] [CrossRef]
- Büttner, G.; Kosztra, B. CLC2006 Technical Guidelines; European Environment Agency: Copenhagen, Denmark, 2007. [Google Scholar]
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; Potin, P.; Rommen, B.; Floury, N.; Brown, M.; et al. GMES Sentinel-1 mission. Remote Sens. Environ. 2012, 120, 9–24. [Google Scholar] [CrossRef]
- Schmullius, C.; Thiel, C.; Pathe, C.; Santoro, M. Radar time series for land cover and forest mapping. In Remote Sensing Time Series; Kuenzer, C., Dech, S., Wagner, W., Eds.; Remote Sensing and Digital Image Processing; Springer International Publishing: Basel, Switzerland, 2015; pp. 323–356. [Google Scholar]
- Kwarteng, A.Y.; Dobson, M.C.; Kellndorfer, J.; Williams, R. SAR-based land cover classification of Kuwait. Int. J. Remote Sens. 2008, 29, 6739–6778. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, D. A statistical-measure-based adaptive land cover classification algorithm by efficient utilization of polarimetric SAR observables. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2889–2900. [Google Scholar] [CrossRef]
- Wagner, W.; Sabel, D.; Doubkova, M.; Hornacek, M.; Schlaffer, S.; Bartsch, A. Prospects of Sentinel-1 for land applications. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 1741–1744.
- Thiel, C.; Cartus, O.; Eckardt, R.; Richter, N.; Thiel, C.; Schmullius, C. Analysis of multi-temporal land observation at C-band. In Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Cape Town, South Africa, 12–17 July 2009.
- Millin-Chalabi, G.; McMorrow, J.; Agnew, C. Detecting a moorland wildfire scar in the Peak District, UK, using synthetic aperture radar from ERS-2 and Envisat ASAR. Int. J. Remote Sens. 2014, 35, 54–69. [Google Scholar] [CrossRef]
- Park, N.-W.; Chi, K.-H. Integration of multitemporal/polarization C-band SAR data sets for land-cover classification. Int. J. Remote Sens. 2008, 29, 4667–4688. [Google Scholar] [CrossRef]
- Balzter, H. Forest mapping and monitoring with interferometric synthetic aperture radar (InSAR). Prog. Phys. Geogr. 2001, 25, 159–177. [Google Scholar] [CrossRef]
- Gaveau, D.L.A.; Balzter, H.; Plummer, S. Forest woody biomass classification with satellite-based radar coherence over 900 000 km2 in Central Siberia. For. Ecol. Manag. 2003, 174, 65–75. [Google Scholar] [CrossRef]
- Li, G.; Lu, D.; Moran, E.; Dutra, L.; Batistella, M. A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region. ISPRS J. Photogramm. Remote Sens. 2012, 70, 26–38. [Google Scholar] [CrossRef]
- Longepe, N.; Rakwatin, P.; Isoguchi, O.; Shimada, M.; Uryu, Y.; Yulianto, K. Assessment of ALOS PALSAR 50 m Orthorectified FBD data for regional land cover classification by Support Vector Machines. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2135–2150. [Google Scholar] [CrossRef]
- Esch, T.; Schenk, A.; Ullmann, T.; Thiel, M.; Roth, A.; Dech, S. Characterization of land cover types in TerraSAR-X images by combined analysis of speckle statistics and intensity information. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1911–1925. [Google Scholar] [CrossRef]
- Riedel, T.; Thiel, C.; Schmullius, C. Fusion of multispectral optical and SAR images towards operational land cover mapping in Central Europe. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Lecture Notes in Geoinformation and Cartography; Springer International Publishing: Berlin, Germany, 2008; pp. 493–512. [Google Scholar]
- Satalino, G.; Panciera, R.; Balenzano, A.; Mattia, F.; Walker, J. COSMO-SkyMed multi-temporal data for landcover classification and soil moisture retrieval over an agricultural site in Southern Australia. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 5701–5704.
- Cable, J.W.; Kovacs, J.M.; Shang, J.; Jiao, X. Multi-temporal polarimetric RADARSAT-2 for land cover monitoring in northeastern Ontario, Canada. Remote Sens. 2014, 6, 2372–2392. [Google Scholar] [CrossRef]
- Niu, X.; Ban, Y. Multi-temporal RADARSAT-2 polarimetric SAR data for urban land-cover classification using an object-based support vector machine and a rule-based approach. Int. J. Remote Sens. 2013, 34, 1–26. [Google Scholar] [CrossRef]
- Evans, T.L.; Costa, M.; Telmer, K.; Silva, T.S.F. Using ALOS/PALSAR and RADARSAT-2 to map land cover and seasonal inundation in the Brazilian Pantanal. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 560–575. [Google Scholar] [CrossRef]
- Dobson, M.C.; Pierce, L.E.; Ulaby, F.T. Knowledge-based land-cover classification using ERS-1/JERS-1 SAR composites. IEEE Trans. Geosci. Remote Sens. 1996, 34, 83–99. [Google Scholar] [CrossRef]
- Niu, X.; Ban, Y. Multitemporal polarimetric RADARSAT-2 SAR data for urban land cover mapping through a dictionary-based and a rule-based model selection in a contextual SEM algorithm. Can. J. Remote Sens. 2013, 39, 138–151. [Google Scholar] [CrossRef]
- Ullmann, T.; Schmitt, A.; Roth, A.; Duffe, J.; Dech, S.; Hubberten, H.-W.; Baumhauer, R. Land cover characterization and classification of arctic tundra environments by means of polarized synthetic aperture X- and C-Band Radar (PolSAR) and Landsat 8 multispectral imagery—Richards Island, Canada. Remote Sens. 2014, 6, 8565–8593. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multitemporal SAR imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Van Beijma, S.; Comber, A.; Lamb, A. Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data. Remote Sens. Environ. 2014, 149, 118–129. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007. [Google Scholar] [CrossRef]
- Kobrick, M. On the toes of giants—How SRTM was born. Photogramm. Eng. Remote Sens. 2006, 72, 206–210. [Google Scholar]
- Hensley, S.; Rosen, P.; Gurrola, E. Topographic map generation from the shuttle radar topography mission C-band SCANSAR interferometry. Proc. SPIE 2000, 4152, 179–189. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2014. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Pebesma, E.J.; Bivand, R.S. Classes and methods for spatial data in R. R News 2005, 5, 9–13. [Google Scholar]
- Bivand, R.S.; Pebesma, E.; Gomez-Rubio, V. Applied Spatial Data Analysis with R, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sens. 2015, 7, 14876-14898. https://doi.org/10.3390/rs71114876
Balzter H, Cole B, Thiel C, Schmullius C. Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sensing. 2015; 7(11):14876-14898. https://doi.org/10.3390/rs71114876
Chicago/Turabian StyleBalzter, Heiko, Beth Cole, Christian Thiel, and Christiane Schmullius. 2015. "Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests" Remote Sensing 7, no. 11: 14876-14898. https://doi.org/10.3390/rs71114876
APA StyleBalzter, H., Cole, B., Thiel, C., & Schmullius, C. (2015). Mapping CORINE Land Cover from Sentinel-1A SAR and SRTM Digital Elevation Model Data using Random Forests. Remote Sensing, 7(11), 14876-14898. https://doi.org/10.3390/rs71114876