Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review
Abstract
:1. Introduction
2. Techniques for the Isolation of PAOs
2.1. Isolation of PAOs
2.2. Poly-P Detection and Identification of PAOs
2.2.1. Staining Techniques—Light and Epifluorescence Microscopy (LEM)
2.2.2. Flow Cytometry (FC)
2.2.3. Fluorescence in Situ Hybridization (FISH) Analysis
2.2.4. Extraction Procedures and Polyphosphate Quantification (EXT)
2.2.5. Polyacrylamide Gel Electrophoresis (PAGE)
2.2.6. Electron Microscopy (EM)
2.2.7. X-Ray Analysis Techniques (X-RAY)
2.2.8. Nuclear Magnetic Resonance Spectroscopy (NMRS)
2.2.9. RAMAN Spectromicroscopy (RAM)
2.2.10. Enzyme Assays (EA)
2.2.11. Cryoelectron Tomography and Spectroscopic Imaging (CTSI)
2.2.12. Mass Spectrometry (MS)
2.2.13. Proteic Affinity (PA)
2.2.14. “Omics” Techniques (OMICS)
3. Conclusions
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine Diphosphate |
ATP | Adenosine Triphosphate |
CTSI | Cryoelectron Tomography and Spectroscopic Imaging |
DAPI | 4′,6-Diamidino-2-Phenylindole |
DP | Degree of Polymerisation |
EA | Enzyme Assays |
EBPR | Enhanced Biological Phosphorus Removal |
EM | Electron Microscopy |
EM-EDX | Electron Microscopy—Energy-dispersive X-ray |
ESI-MS | Electrospray Ionisation Mass Spectrometry |
EXT | Extraction procedures |
FACS | Fluorescence-Activated Cell Sorting |
FC | Flow Cytometry |
FESEM | Field-Emission Scanning Electron Microscopy |
FISH | Fluorescence in Situ Hybridization |
GAO | Glycogen Accumulating Organism |
ICP-AES | Inductively Coupled Plasma—Atomic Emission Spectrometry |
LFM | Light and Epifluorescence Microscopy |
MAR | Micro-autoradiography |
MS | Mass Spectrometry |
MT | Megaton |
NMRS | Nuclear Magnetic Resonance Spectroscopy |
OMICS | “Omics” techniques |
P | Phosphate |
PA | Proteic Affinity |
PAGE | Polyacrylamide Gel Electrophoresis |
PAO | Phosphate Accumulating Organism |
PHA | Polyhydroxyalkanoate |
Poly-P | Polyphosphate |
PPBD | Polyphosphate Binding Domain |
PPK | Polyphosphate kinase |
PPX | Exopolyphosphatase |
RAM | Raman spectromicroscopy |
SEM | Scanning Electron Microscopy |
STEM | Scanning Transmission Electron Microscopy |
TCA | Tricarboxylic acid |
Tg | Teragram |
WWTP | Wastewater Treatment Plant |
X-RAY | X-ray analysis techniques |
References
- Wilfert, P.; Kumar, P.S.; Korving, L.; Witkamp, G.-J.; van Loosdrecht, M.C.M. The relevance of phosphorus and iron chemistry to the recovery of phosphorus from wastewater: A review. Environ. Sci. Technol. 2015, 49, 9400–9414. [Google Scholar] [CrossRef] [PubMed]
- Schoumans, O.F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K.C. Phosphorus management in Europe in a changing world. Ambio 2015, 44, 180–192. [Google Scholar] [CrossRef] [PubMed]
- Hirota, R.; Kuroda, A.; Kato, J.; Ohtake, H. Bacterial phosphate metabolism and its application to phosphorus recovery and industrial bioprocesses. J. Biosci. Bioeng. 2010, 109, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Powell, N. Biological Phosphorus Removal by Microalgae in Waste Stabilisation Ponds; Massey University: Palmerston North, New Zealand, 2009. [Google Scholar]
- Ye, Y.; Gan, J.; Hu, B. Screening of Phosphorus-Accumulating Fungi and Their Potential for Phosphorus Removal from Waste Streams. Appl. Biochem. Biotechnol. 2015, 177, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.L.; Li, D.; Li, X.K.; Huang, R.X.; Zhang, J.; Lu, Y.; Xia, G.Q. Phosphorus accumulation by bacteria isolated from a continuous-flow two-sludge system. J. Environ. Sci. 2007, 19, 391–395. [Google Scholar] [CrossRef]
- Kulakovskaya, T.V.; Vagabov, V.M.; Kulaev, I.S. Inorganic polyphosphate in industry, agriculture and medicine: Modern state and outlook. Process. Biochem. 2012, 47, 1–10. [Google Scholar] [CrossRef]
- Mao, Y.; Graham, D.W.; Tamaki, H.; Zhang, T. Dominant and Novel Clades of Candidatus Accumulibacter phosphatis in 18 Globally Distributed Full-Scale Wastewater Treatment Plants. Sci. Rep. 2015, 5, 11857. [Google Scholar] [CrossRef] [PubMed]
- Oehmen, A.; Lemos, P.C.; Carvalho, G.; Yuan, Z.; Keller, J.; Blackall, L.L.; Reis, M.A.M. Advances in enhanced biological phosphorus removal: From micro to macro scale. Water Res. 2007, 41, 2271–2300. [Google Scholar] [CrossRef] [PubMed]
- Morohoshi, T.; Yamashita, T.; Kato, J.; Ikeda, T.; Takiguchi, N.; Ohtake, H.; Kuroda, A. A Method for Screening Polyphosphate-Accumulating Mutants Which Remove Phosphate Efficiently from Synthetic Wastewater. J. Biosci. Bioeng. 2003, 95, 637–640. [Google Scholar] [CrossRef]
- Chaudhry, V.; Nautiyal, C.S. A high throughput method and culture medium for rapid screening of phosphate accumulating microorganisms. Bioresour. Technol. 2011, 102, 8057–8062. [Google Scholar] [CrossRef] [PubMed]
- Aravind, J.; Saranya, T.; Kanmani, P. Optimizing the Production of Polyphosphate from Acinetobacter Towneri. Glob. J. Environ. Sci. Manag. 2015, 1, 63–70. [Google Scholar]
- Khoi, L.Q. Isolation and Phylogenetic Analysis of Polyphosphate Accumulating Organisms in Water and Sludge of Intensive Catfish Ponds in the Mekong Delta, Vietnam. Am. J. Life Sci. 2013, 1, 61. [Google Scholar] [CrossRef]
- Naili, O.; Benounis, M.; Benammar, L. Screening of Bacteria Isolated from Activated Sludges for Phosphate Removal from Wastewater. J. Appl. Environ. Biol. Sci. 2015, 5, 1–5. [Google Scholar]
- Yuan, Z.; Pratt, S.; Batstone, D.J. Phosphorus recovery from wastewater through microbial processes. Curr. Opin. Biotechnol. 2012, 23, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Tchobanoglous, G.; Stensel, D.; Tsuchihashi, R.; Burton, F. Wastewater Engineering: Treatment and Resource Recovery; Eddy, M., Ed.; McGraw-Hill Education-Europe: London, UK, 2013. [Google Scholar]
- Abdulsada, Z.K. Evaluation of Microalgae for Secondary and Tertiary Wastewater Treatment. Ph.D. Thesis, Carleton University Ottawa, Ottawa, ON, Canada, 2014. [Google Scholar]
- Eixler, S.; Selig, U.; Karsten, U. Extraction and detection methods for polyphosphate storage in autotrophic planktonic organisms. Hydrobiologia 2005, 533, 135–143. [Google Scholar] [CrossRef]
- Serafim, L.S.; Lemos, P.C.; Levantesi, C.; Tandoi, V.; Santos, H.; Reis, M.A.M. Methods for detection and visualization of intracellular polymers stored by polyphosphate-accumulating microorganisms. J. Microbiol. Methods 2002, 51, 1–18. [Google Scholar] [CrossRef]
- Hupfer, M.; Glöss, S.; Schmieder, P.; Grossart, H.P. Methods for detection and quantification of polyphosphate and polyphosphate accumulating microorganisms in aquatic sediments. Int. Rev. Hydrobiol. 2008, 93, 1–30. [Google Scholar] [CrossRef]
- Rao, N.N.; Gómez-García, M.R.; Kornberg, A. Inorganic polyphosphate: Essential for growth and survival. Annu. Rev. Biochem. 2009, 78, 605–647. [Google Scholar] [CrossRef] [PubMed]
- Majed, N.; Chernenko, T.; Diem, M.; Gu, A.Z. Identification of functionally relevant populations in enhanced biological phosphorus removal processes based on intracellular polymers profiles and insights into the metabolic diversity and heterogeneity. Environ. Sci. Technol. 2012, 46, 5010–5017. [Google Scholar] [CrossRef] [PubMed]
- Majed, N.; Li, Y.; Gu, A.Z. Advances in techniques for phosphorus analysis in biological sources. Curr. Opin. Biotechnol. 2012, 23, 852–859. [Google Scholar] [CrossRef] [PubMed]
- Ezawa, T.; Smith, S.E.; Smith, F.A. Differentiation of polyphosphate metabolism between the extra- and intraradical hyphae of arbuscular mycorrhizal fungi. New Phytol. 2001, 149, 555–563. [Google Scholar]
- Pandolfi, D.; Dumas, M.D. Caractérisation Morphologique et Physiologique de la Biomasse des Boues Activées par Analyse d’ Images; Institut National Polytechnique de Lorraine: Nancy, France, 2006. [Google Scholar]
- Lorenz, B.; Münkner, J.; Oliveira, M.P.; Leitão, J.M.; Müller, W.E.; Schröder, H.C. A novel method for determination of inorganic polyphosphates using the fluorescent dye fura-2. Anal. Biochem. 1997, 246, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Trutnau, M.; Kleinsteuber, S.; Hause, G.; Bley, T.; Röske, I.; Harms, H.; Müller, S. Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2- phenylindole) and tetracycline labeling. Appl. Environ. Microbiol. 2009, 75, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Röske, I.; Bley, T. Population Structure and Dynamics of Polyphosphate Accumulating Organisms in a Communal Wastewater Treatment Plant; Technischen Universität Dresden: Dresden, Germany, 2011. [Google Scholar]
- Jimenez-Nuñez, M.D.; Moreno-Sanchez, D.; Hernandez-Ruiz, L.; Benítez-Rondán, A.; Ramos-Amaya, A.; Rodríguez-Bayona, B.; Medina, F.; Brieva, J.A.; Ruiz, F.A. Myeloma cells contain high levels of inorganic polyphosphate which is associated with nucleolar transcription. Haematologica 2012, 97, 1264–1271. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Hübschmann, T.; Rudolf, M.; Eschenhagen, M.; Röske, I.; Harms, H.; Müller, S. Fixation procedures for flow cytometric analysis of environmental bacteria. J. Microbiol. Methods 2008, 75, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Miyauchi, R.; Oki, K.; Aoi, Y.; Tsuneda, S. Diversity of nitrite reductase genes in “Candidatus accumulibacter phosphatis”-dominated cultures enriched by flow-cytometric sorting. Appl. Environ. Microbiol. 2007, 73, 5331–5337. [Google Scholar] [CrossRef] [PubMed]
- Günther, S.; Koch, C.; Hübschmann, T.; Röske, I.; Müller, R.A.; Bley, T.; Harms, H.; Müller, S. Correlation of community dynamics and process parameters as a tool for the prediction of the stability of wastewater treatment. Environ. Sci. Technol. 2012, 46, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Mehlig, L.; Petzold, M.; Heder, C.; Gunther, S.; Muller, S.; Eschenhagen, M.; Roske, I.; Roske, K. Biodiversity of Polyphosphate Accumulating Bacteria in Eight WWTPs with Different Modes of Operation. J. Environ. Eng. 2013, 139, 1089–1098. [Google Scholar] [CrossRef]
- Chen, H.; Wang, D.; Li, X.; Yang, Q.; Luo, K. Biological phosphorus removal from real wastewater in a sequencing batch reactor operated as aerobic/extended-idle regime. Biochem. Eng. J. 2013, 77, 147–153. [Google Scholar] [CrossRef]
- Albertsen, M.; Benedicte, L.; Hansen, S.; Saunders, A.M.; Nielsen, P.H. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J. 2012, 2012, 1094–1106. [Google Scholar] [CrossRef] [PubMed]
- Broch, S.P. Operation and Control of SBR Processes for Enhanced Biological Nutrient Removal from Wastewater; Universitat de Girona: Girona, Spain, 2008. [Google Scholar]
- Burow, L.C.; Mabbett, A.N.; Blackall, L.L. Anaerobic glyoxylate cycle activity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enriched in enhanced biological phosphorus removal communities. ISME J. 2008, 2, 1040–1051. [Google Scholar] [CrossRef] [PubMed]
- De Kreuk, M.K.; Heijnen, J.J.; van Loosdrecht, M.C.M. Simultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge. Biotechnol. Bioeng. 2005, 90, 761–769. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.T.; Nielsen, A.T.; Wu, J.H.; Tsai, C.S.; Matsuo, Y.; Molin, S. In situ identification of polyphosphate- and polyhydroxyalkanoate-accumulating traits for microbial populations in a biological phosphorus removal process. Environ. Microbiol. 2001, 3, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.; Kim, Y.; Lee, D.; Shim, H.; Kim, J. Characteristics of Denitrifying Phosphate Accumulating Organisms in an Anaerobic-Intermittently Aerobic Process. Environ. Eng. Sci. 2006, 23, 981–993. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, H.J.; Kim, S.Y.; Song, J.J.; Park, W.; Jeon, C.O. Analysis of the fine-scale population structure of “candidatus accumulibacter phosphatis” in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometric sorting. Appl. Environ. Microbiol. 2010, 76, 3825–3835. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, S.; Ahn, J.; Seviour, R.J. Ecophysiology of polyphosphate-accumulating organisms and glycogen-accumulating organisms in a continuously aerated enhanced biological phosphorus removal process. J. Appl. Microbiol. 2008, 105, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Breus, N.A.; Ryazanova, L.P.; Suzina, N.E.; Kulakovskaya, N.V.; Valiakhmetov, A.Y.; Yashin, V.A.; Sorokin, V.V.; Kulaev, I.S. Accumulation of inorganic polyphosphates in Saccharomyces cerevisiae under nitrogen deprivation: Stimulation by magnesium ions and peculiarities of localization. Microbiology 2011, 80, 624–630. [Google Scholar] [CrossRef]
- Breus, N.A.; Ryazanova, L.P.; Dmitriev, V.V.; Kulakovskaya, T.V.; Kulaev, I.S. Accumulation of phosphate and polyphosphate by Cryptococcus humicola and Saccharomyces cerevisiae in the absence of nitrogen. FEMS Yeast Res. 2012, 12, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Morrissey, J.H. Sensitive fluorescence detection of polyphosphate in polyacrylamide gels using 4′,6-diamidino-2-phenylindol. Electrophoresis 2007, 28, 3461–3465. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Jerez, C.A. Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 2004, 70, 5177–5182. [Google Scholar] [CrossRef] [PubMed]
- Cosmidis, J.; Benzerara, K.; Menguy, N.; Arning, E. Microscopy evidence of bacterial microfossils in phosphorite crusts of the Peruvian shelf: Implications for phosphogenesis mechanisms. Chem. Geol. 2013, 359, 10–22. [Google Scholar] [CrossRef]
- Ge, H.; Batstone, D.J.; Keller, J. Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae. Water Res. 2015, 69, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Rivadeneyra, A.; Gonzalez-Martinez, A.; Gonzalez-Lopez, J.; Martin-Ramos, D.; Martinez-Toledo, M.V.; Rivadeneyra, M.A. Precipitation of phosphate minerals by microorganisms isolated from a fixed-biofilm reactor used for the treatment of domestic wastewater. Int. J. Environ. Res. Public Health 2014, 11, 3689–3704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Lo, V.K.; Thompson, J.R.; Koch, F.A.; Liao, P.H.; Mavinic, D.S.; Atwater, J.W. Recovery of phosphorus from dairy manure: A pilot- scale study. Environ. Technol. 2015, 36, 1398–1404. [Google Scholar] [CrossRef] [PubMed]
- Malley, D.F.; Lockhart, L.; Wilkinson, P.; Hauser, B. Determination of carbon, carbonate, nitrogen, and phosphorus in freshwater sediments by near-infrared reflectance spectroscopy: Rapid analysis and a check on conventional analytical methods. J. Paleolimnol. 2000, 24, 415–425. [Google Scholar] [CrossRef]
- Schuster, K.C.; Urlaub, E.; Gapes, J.R. Single-cell analysis of bacteria by Raman microscopy: Spectral information on the chemical composition of cells and on the heterogeneity in a culture. J. Microbiol. Methods 2000, 42, 29–38. [Google Scholar] [CrossRef]
- Majed, N.; Matthäus, C.; Diem, M.; Gu, A.Z. Evaluation of intracellular polyphosphate dynamics in enhanced biological phosphorus removal process using Raman microscopy. Environ. Sci. Technol. 2009, 43, 5436–5442. [Google Scholar] [CrossRef] [PubMed]
- Majed, N.; Gu, A.Z. Application of Raman microscopy for simultaneous and quantitative evaluation of multiple intracellular polymers dynamics functionally relevant to enhanced biological phosphorus removal processes. Environ. Sci. Technol. 2010, 44, 8601–8608. [Google Scholar] [CrossRef] [PubMed]
- Comolli, L.R.; Kundmann, M.; Downing, K.H. Characterization of intact subcellular bodies in whole bacteria by cryo-electron tomography and spectroscopic imaging. J. Microsc. 2006, 223, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Ohtomo, R.; Kuga-Uetake, Y.; Aono, T.; Saito, M. Direct labeling of polyphosphate at the ultrastructural level in Saccharomyces cerevisiae by using the affinity of the polyphosphate binding domain of Escherichia coli exopolyphosphatase. Appl. Environ. Microbiol. 2005, 71, 5692–5701. [Google Scholar] [CrossRef] [PubMed]
- Forbes, C.M.; O’Leary, N.D.; Dobson, A.D.; Marchesi, J.R. The contribution of “omic”-based approaches to the study of enhanced biological phosphorus removal microbiology: Minireview. FEMS Microbiol. Ecol. 2009, 69, 1–15. [Google Scholar] [CrossRef] [PubMed]
- McMahon, K.D.; Dojka, M.A.; Pace, N.R.; Jenkins, D.; Keasling, J.D. Polyphosphate Kinase from Activated Sludge Performing Enhanced Biological Phosphorus Removal. Appl. Environ. Microbiol. 2002, 68, 4971–4978. [Google Scholar] [CrossRef] [PubMed]
- Wilmes, P.; Wexler, M.; Bond, P.L. Metaproteomics provides functional insight into activated sludge wastewater treatment. PLoS ONE 2008, 3, e1778. [Google Scholar] [CrossRef] [PubMed]
- Wexler, M.; Richardson, D.J.; Bond, P.L. Radiolabelled proteomics to determine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environ. Microbiol. 2009, 11, 3029–3044. [Google Scholar] [CrossRef] [PubMed]
Technique | Information |
---|---|
Light and fluorescence microscopy coupled with specific staining (LEM) | Presence/absence of Poly-P |
Flow cytometry (FC) | Location and quantification of Poly-P granules, cell sorting |
FISH analysis (FISH) | Detection of PAOs |
Extraction procedures and phosphate quantification (EXT) | Quantification of Poly-P |
Polyacrylamide gel electrophoresis (PAGE) | Detection of Poly-P, determination of DP |
Electron microscopy (EM) | Presence/absence of Poly-P, location and composition of Poly-P granules |
X-ray analysis (X-RAY) | Composition of Poly-P granules, possible quantification |
Nuclear Magnetic Resonance Spectroscopy (NMRS) | Detection of Poly-P, study of Poly-P structure |
RAMAN microscopy (RAM) | Detection and quantification of Poly-P |
Enzyme assays (EA) | Detection and quantification of Poly-P |
Cryoelectron tomography and spectroscopic imaging (CTSI) | Detection of Poly-P, study of Poly-P structure |
Mass spectrometry (MS) | Detection of Poly-P, study of Poly-P structure |
Proteic affinity (PA) | Detection of Poly-P, location of Poly-P granules |
“Omics techniques” (OMICS) | Study of PAOs in complex communities |
Technique | Investment | Advantages | Disadvantages |
---|---|---|---|
LFM-MB | low | Simplicity, rapidity Direct visualization of Poly-P granules | Not adapted to visualize small granules Non-quantitative technique Requirement of a preparation protocol and an acidic pH Destructive technique |
LFM-NR | low | Simplicity, rapidity Direct visualization of Poly-P granules | Technique targeting acidic vacuoles and not Poly-P itself Non-quantitative technique Requirement of a preparation protocol and an acidic pH Destructive technique |
LFM-DAPI | low | Possibility to visualize polyhydroxyalkanoate Possibility of combination with other techniques (FC) | Expensive staining reagent Non-quantitative and destructive technique No specificity to Poly-P Importance of the noise with high DAPI concentrations |
FC | high | Possibility to visualize polyhydroxyalkanoate Possibility to sort the cells in a complex sample Possibility to study the phenotypic heterogeneity Possibility to locate Poly-P inside the cells Possibility to combine different staining techniques Possibility to combine with FISH-A Possibility to adapt the technique to animal cells | Same disadvantages as LFM-DAPI Obligation to filtrate the samples Destructive technique |
FISH-A | low | Possibility to combine with FC and FISH-A Possibility to study specific groups of PAOs Possibility to study gene expression Possibility to study complex microbiotas | Complexity of sample preparation Efficiency depending on the penetration of the probes inside the cells No specificity to Poly-P Destructive technique |
EXT | low | Possibility to measure phosphate resulting from the hydrolysis by diversified techniques Possibility to characterize different Poly-P fractions Quantitative technique | Efficiency depending on the association of Poly-P with other molecules Effect of cations and chain length on the analysis The extraction can lead to undesired modifications of Poly-P Destructive technique |
PAGE | low | Possibility to measure the size and the DP of Poly-P Possibility to combine with DAPI staining Semi-quantitative technique | The technique requires a step of Poly-P extraction Poly-P must be treated to be soluble Destructive technique |
EM | high | Possibility to locate Poly-P inside the cells Possibility to combine the technique with staining protocols and X-RAY Possibility to observe Poly-P granules inferior to 100 nm | Complexity of sample preparation Non quantitative and destructive technique SEM may be not adapted to observe internal Poly-P granules |
X-RAY | high | Powerful combination with EM Quantitative analysis Possibility to combine with X-ray fluorescence spectromicroscopy leading to the study of the repartition of Poly-P inside the cells | Possible loss of Poly-P during the preparation protocol Destructive technique |
NMRS | high | Global assessment of phosphorus metabolism inside the cells Applicability to liquid and solid samples Possibility to use the method as a follow-up technique of bioreactors Nondestructive technique | Tagged substrates required Frequency of interferences due to the medium No specificity to Poly-P but measurement of phosphodiester linkages |
RAM | high | Simplicity of preparation protocol Quantitative detection of Poly-P and other storage polymers Applicability to the study of microbial consortia Distinction of PAOs and GAOs | Weakness of RAMAN signal which requires an adapted device Interferences due to impurities and fluorescence |
EA | low | Quantitative technique Possibility to assess the metabolism of Poly-P extracts | Complexity of preparation of samples to avoid an inactivation of enzymes due to impurities Complexity of enzymatic reaction, less simple than with simple chemical reagents Destructive technique |
CTSI | high | Possibility to measure the diameter of Poly-P granules with a high accuracy Possibility to observe many cellular structures Nondestructive technique | Complexity of sample preparation Non quantitative and visual technique |
MS | high | Possibility to characterize different Poly-P fractions High selectivity and sensitivity Simple sample preparation protocol | Destructive technique The technique requires standard samples |
PA | low | Quantitative technique Possibility to locate Poly-P High resolution when the technique is combined with EM | Complexity of sample preparation The technique requires antibodies specific to Poly-P |
OMICS | high | Global overview of microbial consortia Possible combination with other techniques (FISH-A) Possibility to assess the evolution of complex consortia in time and according to specific conditions | Not adapted to measure the Poly-P content Requirement of up-to-date databases |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarayre, C.; Nguyen, H.-T.; Brognaux, A.; Delepierre, A.; De Clercq, L.; Charlier, R.; Michels, E.; Meers, E.; Delvigne, F. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review. Sensors 2016, 16, 797. https://doi.org/10.3390/s16060797
Tarayre C, Nguyen H-T, Brognaux A, Delepierre A, De Clercq L, Charlier R, Michels E, Meers E, Delvigne F. Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review. Sensors. 2016; 16(6):797. https://doi.org/10.3390/s16060797
Chicago/Turabian StyleTarayre, Cédric, Huu-Thanh Nguyen, Alison Brognaux, Anissa Delepierre, Lies De Clercq, Raphaëlle Charlier, Evi Michels, Erik Meers, and Frank Delvigne. 2016. "Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review" Sensors 16, no. 6: 797. https://doi.org/10.3390/s16060797
APA StyleTarayre, C., Nguyen, H.-T., Brognaux, A., Delepierre, A., De Clercq, L., Charlier, R., Michels, E., Meers, E., & Delvigne, F. (2016). Characterisation of Phosphate Accumulating Organisms and Techniques for Polyphosphate Detection: A Review. Sensors, 16(6), 797. https://doi.org/10.3390/s16060797