Estimation of Soil Surface Roughness Using Stereo Vision Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Preparation
2.2. Image Acquisition
2.3. Roughness Measurement
2.4. Calibration and Image Rectification
2.5. Keypoints Extraction and Matching
2.6. Disparity Calculation and Depth Map Estimation
2.7. Three Dimmensional Reconstruction
2.8. Evaluation Metric
3. Results
3.1. Noise Effect
3.2. Robustness against Geometrical Variations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pereira, M.F.L.; Cruvinel, P.E. A model for soil computed tomography based on volumetric reconstruction, Wiener filtering and parallel processing. Comput. Electron. Agric. 2015, 111, 151–163. [Google Scholar] [CrossRef]
- Tang, Y.; Li, L.; Wang, C.; Chen, M.; Feng, W.; Zou, X.; Huang, K. Real-time detection of surface deformation and strain in recycled aggregate concrete-filled steel tubular columns via four-ocular vision. Robot. Comput. Integr. Manuf. 2019, 59, 36–46. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Y.; Zou, X.; Huang, K.; Li, L.; He, Y. High-accuracy multi-camera reconstruction enhanced by adaptive point cloud correction algorithm. Opt. Lasers Eng. 2019, 122, 170–183. [Google Scholar] [CrossRef]
- Baghdadi, N.; Choker, M.; Zribi, M.; Hajj, M.E.; Paloscia, S.; Verhoest, N.E.; Lievens, H.; Baup, F.; Mattia, F. A new empirical model for radar scattering from bare soil surfaces. Remote Sens. 2016, 8, 920. [Google Scholar] [CrossRef] [Green Version]
- Fanigliulo, R.; Antonucci, F.; Figorilli, S.; Pochi, D.; Pallottino, F.; Fornaciari, L.; Grilli, R.; Costa, C. Light drone-based application to assess soil tillage quality parameters. Sensors 2020, 20, 728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandri, R.; Anken, T.; Hilfiker, T.; Sartori, L.; Bollhalder, H. Comparison of methods for determining cloddiness in seedbed preparation. Soil Tillage Res. 1998, 45, 75–90. [Google Scholar] [CrossRef]
- Jester, W.; Klik, A. Soil surface roughness measurement–methods, applicability, and surface representation. Catena 2005, 64, 174–192. [Google Scholar] [CrossRef]
- Petitpas, B.; Beaudoin, L.; Roux, M.; Rudent, J.P. Roughness measurement from multi-stereo reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 104–109. [Google Scholar]
- Azizi, A.; Abbaspour-Gilandeh, Y.; Vannier, E.; Dusséaux, R.; Mseri-Gundoshmian, T.; Moghaddam, H.A. Semantic segmentation: A modern approach for identifying soil clods in precision farming. Biosyst. Eng. 2020, 196, 172–182. [Google Scholar] [CrossRef]
- Bogrekci, I.; Godwin, R.J. Development of an image-processing technique for soil tilth sensing. Biosyst. Eng. 2007, 97, 323–331. [Google Scholar] [CrossRef]
- Itoh, H.; Matsuo, K.; Oida, A.; Nakashima, H.; Miyasaka, J.; Izumi, T. Aggregate size measurement by machine vision. J. Terramechanics 2008, 45, 137–145. [Google Scholar] [CrossRef]
- Rahimi-Ajdadi, F.; Abbaspour-Gilandeh, Y.; Mollazadeh, K.; Hasanzade, P.R.R. Application of machine vision for classification of soil aggregate size. Soil Tillage Res. 2016, 162, 8–17. [Google Scholar] [CrossRef]
- Vannier, E.; Ciarletti, V.; Darboux, F. Wavelet-based detection of clods on a soil surface. Comput. Geosci 2009, 35, 2259–2267. [Google Scholar] [CrossRef]
- Taconet, O.; Vannier, E.; Le Hégarat-Mascle, S.A. boundary-based approach for clods identification and characterization on a soil surface. Soil Tillage Res. 2010, 109, 123–132. [Google Scholar] [CrossRef]
- Garcia Moreno, R.; Saa Requejo, A.; Duran Altisent, J.M.; Diaz Alvarez, M.C. Significance of soil erosion on soil surface roughness decay after tillage operations. Soil Tillage Res. 2011, 117, 49–54. [Google Scholar] [CrossRef]
- Chimi-Chiadjeu, O.; Le Hégarat-Mascle, S.; Vannier, E.; Taconet, O.; Dusséaux, R. Automatic clod detection and boundary estimation from Digital Elevation Model images using different approaches. Catena 2014, 118, 73–83. [Google Scholar] [CrossRef]
- Vannier, E.; Taconet, O.; Dusséaux, R.; Darboux, F. A study of clod evolution in simulated rain on the basis of digital elevations models. Catena 2018, 160, 212–221. [Google Scholar] [CrossRef]
- Blaes, X.; Defourny, P.; Callensand, M.; Verhoest, N.E.C. Bi-dimensional soil roughness measurement by photogrammetry for SAR modeling of agricultural surfaces. In Proceedings of the 2004 IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, USA, 20–24 September 2004; pp. 4038–4041. [Google Scholar]
- Gilliot, J.M.; Vaudour, E.; Michelin, J. Soil surface roughness measurement: A fully automatic photogrammetric approach applied to agricultural bare fields. Comput. Electron. Agric. 2017, 134, 63–78. [Google Scholar] [CrossRef]
- Thomsen, L.M.; Baartman, J.E.M.; Barneveld, R.J.; Starkloff, T.; Stolte, J. Soil surface roughness: Comparing old and new measuring methods and application in a soil erosion model. Soil 2015, 1, 399–410. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Qin, J.; Yang, X.; Zhang, X.; Shang, Y.; Zhang, H.; Yu, Q. An Accurate Linear Method for 3D Line Reconstruction for Binocular or Multiple View Stereo Vision. Sensors 2021, 21, 658. [Google Scholar] [CrossRef]
- Ge, L.; Yang, Z.; Sun, Z.; Zhang, G.; Zhang, M.; Zhang, K.; Zhang, C.; Tan, Y.; Li, W. A method for broccoli seedling recognition in natural environment based on binocular stereo vision and gaussian mixture model. Sensors 2019, 19, 1132. [Google Scholar] [CrossRef] [Green Version]
- Pezzuolo, A.; Guarino, M.; Sartori, L.; González, L.A.; Marinello, F. On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera. Comput. Electron. Agric. 2018, 148, 29–36. [Google Scholar] [CrossRef]
- Pezzuolo, A.; Milani, V.; Zhu, D.; Guo, H.; Guercini, S.; Marinello, F. On-barn pig weight estimation based on body measurements by structure-from-motion (SfM). Sensors 2018, 18, 3603. [Google Scholar] [CrossRef] [Green Version]
- Poreh, D.; Iodice, A.; Natale, A.; Riccio, D. Software Tool for Soil Surface Parameters Retrieval from Fully Polarimetric Remotely Sensed SAR Data. Sensors 2020, 20, 5085. [Google Scholar] [CrossRef]
- Saleh, A. Soil roughness measurement: Chain method. J. Soil Water Conserv. 1993, 48, 527–529. [Google Scholar]
- Loop, C.; Zhang, Z. Computing rectifying homographies for stereo vision. In Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Collins, CO, USA, 23–25 June 1999; pp. 125–131. [Google Scholar]
- Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Labatut, P.; Pons, J.P.; Keriven, R. Efficient multi-view reconstruction of large-scale scenes using interest points, delaunay triangulation and graph cuts. In Proceedings of the IEEE 11th International Conference on Computer Vision, Rio de Janeiro, Brazil, 14–20 October 2007; pp. 1–8. [Google Scholar]
- Fua, P.; Sander, P. Reconstructing surfaces from unstructured 3d points. In Proceedings of the Second European Conference on Computer Vision (ECCV’90), Margherita Ligure, Italy, 19–22 May 1992. [Google Scholar]
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Bradski, G.; Kaehler, A. Learning OpenCV: Computer Vision with the OpenCV Library; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008. [Google Scholar]
Random Points of Soil Surface | RMSE X (Pixel) | RMSE Y (Pixel) | ||
---|---|---|---|---|
X1 | X2 | Y1 | Y2 | |
1 | 2.12 | 2.09 | 0.91 | 0.86 |
2 | 2.36 | 2.42 | 1.22 | 1.40 |
3 | 0.98 | 0.85 | 1.75 | 2.08 |
4 | 1.79 | 1.93 | 0.68 | 0.80 |
5 | 1.90 | 2.23 | 0.74 | 1.01 |
Mean RMSE | 1.07 | 1.65 | ||
RMSE XY | 2.14 |
Evaluation Metrics | Implement type | ||
---|---|---|---|
Moldboard | Disk | Rotavator | |
R2 | 0.9 | 0.83 | 0.78 |
RMSE | 9.08 | 10.83 | 12.32 |
Parameters | Intrinsic Parameters | Extrinsic Parameters | ||
---|---|---|---|---|
Camera 1 | Camera 2 | Rotation Vector (°) | Translation Vector (mm) | |
Focal length (pixels) | (61.4, 61.4) | (61.4, 61.4) | (0.003, 0.002, 1.670 × 10−4) | (−73.080, 1.009, −9.143) |
Principle point (pixels) | (54.6, 75.6) | (54.7, 74.8) | ||
Skew value (pixels) | (0.9078) | (0.9016) | ||
Radial distortion (mm) | (0.0167, 0.4256) | (0.0167, 0.4282) | ||
Tangential distortion (mm) | (6.84 × 10−4, 5.× 10−4) | (6.83 × 10−4, 5.81 × 10−4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azizi, A.; Abbaspour-Gilandeh, Y.; Mesri-Gundoshmian, T.; Farooque, A.A.; Afzaal, H. Estimation of Soil Surface Roughness Using Stereo Vision Approach. Sensors 2021, 21, 4386. https://doi.org/10.3390/s21134386
Azizi A, Abbaspour-Gilandeh Y, Mesri-Gundoshmian T, Farooque AA, Afzaal H. Estimation of Soil Surface Roughness Using Stereo Vision Approach. Sensors. 2021; 21(13):4386. https://doi.org/10.3390/s21134386
Chicago/Turabian StyleAzizi, Afshin, Yousef Abbaspour-Gilandeh, Tarahom Mesri-Gundoshmian, Aitazaz A. Farooque, and Hassan Afzaal. 2021. "Estimation of Soil Surface Roughness Using Stereo Vision Approach" Sensors 21, no. 13: 4386. https://doi.org/10.3390/s21134386
APA StyleAzizi, A., Abbaspour-Gilandeh, Y., Mesri-Gundoshmian, T., Farooque, A. A., & Afzaal, H. (2021). Estimation of Soil Surface Roughness Using Stereo Vision Approach. Sensors, 21(13), 4386. https://doi.org/10.3390/s21134386