A Method for Point Cloud Accuracy Analysis Based on Intensity Information
Abstract
:1. Introduction
- Environmental factors: atmospheric conditions, lighting conditions, and the reflective properties of surrounding objects can influence laser propagation and consequently the accuracy of point cloud data;
- Surface and scanning geometry: the color, texture, material, and roughness of an object’s surface, as well as the scanning distance and incident angle, can cause variations in the reflected laser intensity, impacting the ranging accuracy.
- Scanner placement: unstable installation or imprecise positioning of the scanner can result in measurement errors.
2. Materials and Methods
2.1. Sensor
2.2. Data Acquisition
2.3. Plane Fitting and Residuals Analysis
2.4. Lambertian Reflectance Model
2.5. Single-Point Error Ellipsoid Model
3. Accuracy Analysis Based on Percentage Intensity
3.1. Lambertian Circle Fitting and Analysis
3.2. Reflectance Enhancement Experiment
4. Error Ellipsoid Model for Single-Point Accuracy Estimation
4.1. Model of Ranging Accuracy Based on Raw Intensity
4.2. Experiment for Evaluating Point Cloud Accuracy
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Liu, Y.; Chen, Y.; Zhao, C.; Qiu, J.; Wu, D.; Liu, T.; Fan, H.; Qin, Y.; Tang, K. A state-of-the-practice review of three-dimensional laser scanning technology for tunnel distress monitoring. J. Perform. Constr. Facil. 2023, 37, 03123001. [Google Scholar] [CrossRef]
- Guo, Y.; Li, X.; Ju, S.; Lyu, Q.; Liu, T. Utilization of 3D Laser Scanning for Stability Evaluation and Deformation Monitoring of Landslides. J. Environ. Public Health 2022, 2022, 8225322. [Google Scholar] [CrossRef]
- Skrzypczak, I.; Oleniacz, G.; Leśniak, A.; Zima, K.; Mrówczyńska, M.; Kazak, J.K. Scan-to-BIM method in construction: Assessment of the 3D buildings model accuracy in terms inventory measurements. Build. Res. Inf. 2022, 50, 859–880. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, W. Application of 3D Scanning Technique in the Grottoes Protection. In Proceedings of the 2022 Global Conference on Robotics, Artificial Intelligence and Information Technology (GCRAIT), Chicago, IL, USA, 30–31 July 2022; pp. 553–555. [Google Scholar]
- Guo, J.; Jiang, J.; Wu, L.; Zhou, W.; Wei, L. 3D modeling for mine roadway from laser scanning point cloud. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 4452–4455. [Google Scholar]
- Rausch, C.; Lu, R.; Talebi, S.; Haas, C. Deploying 3D scanning based geometric digital twins during fabrication and assembly in offsite manufacturing. Int. J. Constr. Manag. 2023, 23, 565–578. [Google Scholar] [CrossRef]
- Nováková, M.; Gallay, M.; Šupinský, J.; Ferré, E.; Asti, R.; de Saint Blanquat, M.; Bajolet, F.; Sorriaux, P. Correcting laser scanning intensity recorded in a cave environment for high-resolution lithological mapping: A case study of the Gouffre Georges, France. Remote Sens. Environ. 2022, 280, 113210. [Google Scholar] [CrossRef]
- Tzortzinis, G.; Ai, C.; Breña, S.F.; Gerasimidis, S. Using 3D laser scanning for estimating the capacity of corroded steel bridge girders: Experiments, computations and analytical solutions. Eng. Struct. 2022, 265, 114407. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, B.; Zhang, X.; Liang, J. Automatic extraction and evaluation of pavement three-dimensional surface texture using laser scanning technology. Autom. Constr. 2022, 141, 104410. [Google Scholar] [CrossRef]
- Arseniou, G.; MacFarlane, D.W.; Calders, K.; Baker, M. Accuracy differences in aboveground woody biomass estimation with terrestrial laser scanning for trees in urban and rural forests and different leaf conditions. Trees 2023, 37, 3. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, X.; Lu, W.; Ma, J.; Guo, X. A new three-dimensional laser scanner design and its performance analysis. Optik 2015, 126, 701–707. [Google Scholar] [CrossRef]
- Thiel, K.; Wehr, A. Performance capabilities of laser scanners–an overview and measurement principle analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 36, 14–18. [Google Scholar]
- Niola, V.; Rossi, C.; Savino, S.; Strano, S. A method for the calibration of a 3-D laser scanner. Robot. Comput.-Integr. Manuf. 2011, 27, 479–484. [Google Scholar] [CrossRef]
- Vogel, S.; Ernst, D.; Neumann, I.; Alkhatib, H. Recursive Gauss-Helmert model with equality constraints applied to the efficient system calibration of a 3D laser scanner. J. Appl. Geod. 2022, 16, 37–57. [Google Scholar] [CrossRef]
- Lichti, D.D.; Harvey, B. The effects of reflecting surface material properties on time-of-flight laser scanner measurements. In Proceedings of the Symposium on Geospatial Theory, Processing and Applications, Ottawa, ON, Canada, 9–12 July 2002; pp. 1–9. [Google Scholar]
- Boehler, W.; Vicent, M.B.; Marbs, A. Investigating laser scanner accuracy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2003, 34, 696–701. [Google Scholar]
- Pfeifer, N.; Dorninger, P.; Haring, A.; Fan, H. Investigating terrestrial laser scanning intensity data: Quality and functional relations. 8th Conference on Optical 3-D Measurement Techniques. Terr. Laser Scanning I 2007, 328–337. [Google Scholar]
- Pfeifer, N.; Höfle, B.; Briese, C.; Rutzinger, M.; Haring, A. Analysis of the backscattered energy in terrestrial laser scanning data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2008, 37, 1045–1052. [Google Scholar]
- Soudarissanane, S.; Lindenbergh, R.; Menenti, M.; Teunissen, P. Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points. ISPRS J. Photogramm. Remote Sens. 2011, 66, 389–399. [Google Scholar] [CrossRef]
- Bolkas, D.; Martinez, A. Effect of target color and scanning geometry on terrestrial LiDAR point-cloud noise and plane fitting. J. Appl. Geod. 2018, 12, 109–127. [Google Scholar] [CrossRef]
- Wujanz, D.; Burger, M.; Mettenleiter, M.; Neitzel, F. An intensity-based stochastic model for terrestrial laser scanners. ISPRS J. Photogramm. Remote Sens. 2017, 125, 146–155. [Google Scholar] [CrossRef]
- Chen, X.; Hua, X.; Zhang, G.; Wu, H.; Xuan, W.; Li, M. Evaluating point cloud accuracy of static three-dimensional laser scanning based on point cloud error ellipsoid model. J. Appl. Remote Sens. 2015, 9, 095991. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, G.; Hua, X.; Xuan, W. An Average Error-Ellipsoid Model for Evaluating TLS Point-Cloud Accuracy. Photogramm. Rec. 2016, 31, 71–87. [Google Scholar] [CrossRef]
- Zhengchun, D.; Zhaoyong, W.; Jianguo, Y. Point cloud uncertainty analysis for laser radar measurement system based on error ellipsoid model. Opt. Lasers Eng. 2016, 79, 78–84. [Google Scholar] [CrossRef]
- Ozendi, M.; Akca, D.; Topan, H. An emprical point error model for TLS derived point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 557–563. [Google Scholar] [CrossRef]
- Ozendi, M.; Akca, D.; Topan, H. A generic point error model for TLS derived point clouds. In Proceedings of the Videometrics, Range Imaging, and Applications XIV, Munich, Germany, 26–27 June 2017; pp. 140–157. [Google Scholar]
- Zoller+Fröhlich GmbH. Z+F Imager 5016: Data Sheet. Available online: https://zf-usa.com/wp-content/uploads/2021/06/ZF-IMAGER-5016_Datasheet-E_compr.pdf (accessed on 20 April 2023).
- Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Oren, M.; Nayar, S.K. Generalization of the Lambertian model and implications for machine vision. Int. J. Comput. Vis. 1995, 14, 227–251. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, X.; Zhao, N.; Khan, M.B. Analysis of the Applicable Range of the Standard Lambertian Model to Describe the Reflection in Visible Light Communication. Electronics 2022, 11, 1514. [Google Scholar] [CrossRef]
Elements | Scan Scope | Resolution | Accuracy |
---|---|---|---|
Range | 0.3~365 m | 0.1 mm | ≤1 mm + 10 ppm/m |
Vertical | 320° | 0.00026° | 0.004° |
Horizontal | 360° | 0.00018° | 0.004° |
Test Area | Average Intensity | Improvement (%) |
---|---|---|
First-Phase Concrete Surface | 0.32 | - |
First-Phase White Painted Surface | 0.39 | 22% |
Second-Phase Concrete Surface | 0.29 | - |
Second-Phase White Painted Surface | 0.36 | 24% |
Test Area | RMSE (mm) | Improvement (%) |
---|---|---|
Concrete Surface | 1.0 | - |
White Painted Surface | 0.8 | 20% |
Model Parameters | RMSE (mm) | R-Squared | |||
---|---|---|---|---|---|
c1 | c2 | c3 | c4 | ||
253.8 | −0.4694 | 6.416 | −8.354 | 0.03 | 0.99 |
Test Area | RMSE (mm) | Max Error (mm) | Evaluated Error (k = 1) (mm) |
---|---|---|---|
Ground | 0.20 | 0.72 | 0.85 |
Wall 1 | 0.12 | 0.35 | 0.36 |
Wall 2 | 0.15 | 0.45 | 0.47 |
Ceiling 1 | 0.13 | 0.37 | 0.40 |
Ceiling 2 | 0.14 | 0.43 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zheng, D.; Yue, D.; Hu, C.; Ma, X. A Method for Point Cloud Accuracy Analysis Based on Intensity Information. Sensors 2023, 23, 9135. https://doi.org/10.3390/s23229135
Li S, Zheng D, Yue D, Hu C, Ma X. A Method for Point Cloud Accuracy Analysis Based on Intensity Information. Sensors. 2023; 23(22):9135. https://doi.org/10.3390/s23229135
Chicago/Turabian StyleLi, Siyuan, Dehua Zheng, Dongjie Yue, Chuang Hu, and Xinjiang Ma. 2023. "A Method for Point Cloud Accuracy Analysis Based on Intensity Information" Sensors 23, no. 22: 9135. https://doi.org/10.3390/s23229135
APA StyleLi, S., Zheng, D., Yue, D., Hu, C., & Ma, X. (2023). A Method for Point Cloud Accuracy Analysis Based on Intensity Information. Sensors, 23(22), 9135. https://doi.org/10.3390/s23229135