High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation
Abstract
:1. Introduction
2. Rotational Model of the Torsion Pendulum Based on the Force Modulation Method
2.1. TM Torque Driver Model
2.2. Dynamic Model and Frequency Response Analysis of the Torsion Pendulum
- The torque of interaction between the charged TM and the surrounding conductors;
- The damping torque of vibration;
- The elastic restoring torque.
2.3. Rotational Model of the Torsion Pendulum Based on the Force Modulation Method
3. Charge Calculation Method Based on PSD
3.1. Design of Charge Calculation Method Based on PSD
3.2. Model of Charge Measurement in the Torsion Pendulum Based on PSD
3.3. Performance Verification
3.3.1. In the Ideal Case
3.3.2. With Charge Noise and Angle Sensor Noise Introduced
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, J.; Chen, L.S.; Duan, H.Z.; Gong, Y.G.; Hu, S.; Ji, J.; Liu, Q.; Mei, J.; Milyukov, V.; Sazhin, M.; et al. TianQin: A space-borne gravitational wave detector. Class. Quantum Gravity 2016, 33, 035010. [Google Scholar] [CrossRef]
- Li, H.; Liu, Y.; Wang, C.; Bai, Y.Z.; Liu, L.; Wu, S.; Qu, S.; Tan, D.; Yin, H.; Li, Z.; et al. Preliminary Design Thoughts and Progress of Tianqin Inertial Sensors. J. Sun Yat-Sen Univ. (Nat. Sci. Ed.) 2021, 60, 186–193. [Google Scholar] [CrossRef]
- Shaul, D.; Araújo, H.; Rochester, G.; Sumner, T.; Wass, P. Evaluation of disturbances due to test mass charging for LISA. Class. Quantum Gravity 2005, 22, S297. [Google Scholar] [CrossRef]
- Sumner, T.; Shaul, D.; Schulte, M.; Waschke, S.; Hollington, D.; Araújo, H. LISA and LISA Pathfinder charging. Class. Quantum Gravity 2009, 26, 094006. [Google Scholar] [CrossRef]
- Jun, L.; Linghao, A.; Ai Yanli, E.A. Introduction to the Tianqin Project. J. Sun Yat-Sen Univ. (Nat. Sci. Ed.) 2021, 60, 19. [Google Scholar]
- Fangchao, Y. Investigation of Charge Measurement and Control for Space Inertial Sensors. Master’s Thesis, Huazhong University of Science and Technology, Wuhan, China, 2023. [Google Scholar]
- Araújo, H.; Wass, P.; Shaul, D.; Rochester, G.; Sumner, T. Detailed calculation of test-mass charging in the LISA mission. Astropart. Phys. 2005, 22, 451–469. [Google Scholar] [CrossRef]
- Jafry, Y.; Sumner, T.; Buchman, S. Electrostatic charging of space-borne test bodies used in precision experiments. Class. Quantum Gravity 1996, 13, A97. [Google Scholar] [CrossRef]
- Araujo, H.M.; Howard, A.; Davidge, D.; Sumner, T.J. Charging of isolated proof masses in satellite experiments such as LISA. In Proceedings of the Gravitational-Wave Detection, Waikoloa, HI, USA, 22–28 August 2002; Volume 4856, pp. 55–66. [Google Scholar]
- Araújo, H.; Howard, A.; Shaul, D.; Sumner, T. Electrostatic charging of cubic test masses in the LISA mission. Class. Quantum Gravity 2003, 20, S311. [Google Scholar] [CrossRef]
- Shaul, D.; Sumner, T.; Araújo, H.; Rochester, G.; Wass, P.; Lee, C.G. Unwanted, coherent signals in the LISA bandwidth due to test mass charging. Class. Quantum Gravity 2004, 21, S647. [Google Scholar] [CrossRef]
- Simpson, J. Elemental and isotopic composition of the galactic cosmic rays. Annu. Rev. Nucl. Part. Sci. 1983, 33, 323–382. [Google Scholar] [CrossRef]
- Wass, P.; Araújo, H.; Shaul, D.; Sumner, T. Test-mass charging simulations for the LISA Pathfinder mission. Class. Quantum Gravity 2005, 22, S311. [Google Scholar] [CrossRef]
- Vocca, H.; Grimani, C.; Amico, P.; Bosi, L.; Marchesoni, F.; Punturo, M.; Travasso, F.; Barone, M.; Stanga, R.; Vetrano, F.; et al. Simulation of the charging process of the LISA test masses due to solar flares. Class. Quantum Gravity 2004, 21, S665. [Google Scholar] [CrossRef]
- Han, R.; Cai, M.; Yang, T.; Xu, L.; Xia, Q.; Han, J. Mechanism of test mass charging by cosmic ray energetic particles. Acta Phys. Sin. 2021, 70, 366–374. [Google Scholar] [CrossRef]
- Buchman, S.; Quinn, T.; Keiser, G.; Gill, D.; Sumner, T. Charge measurement and control for the Gravity Probe B gyroscopes. Rev. Sci. Instrum. 1995, 66, 120–129. [Google Scholar] [CrossRef]
- Carbone, L.; Cavalleri, A.; Dolesi, R.; Hoyle, C.; Hueller, M.; Vitale, S.; Weber, W.J. Characterization of disturbance sources for LISA: Torsion pendulum results. Class. Quantum Gravity 2005, 22, S509. [Google Scholar] [CrossRef]
- Li, H.; Hong, W.; Xiao, C.; Li, Z.; Bai, Y.; Zhou, Z. A Continuous Charge Estimation for Gravitational Wave Detections. In Proceedings of the 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), Chengdu, China, 1–4 August 2021; pp. 1160–1163. [Google Scholar]
- Fusheng, Y.; Xiuzhen, D.; Xuetao, S.; Feng, F.; Ruigang, L.; Mingxin, Q.; Mengxing, T.; Jiang, L. Research on Bioelectrical Impedance Analog Demodulation Technology. Beijing Biomed. Eng. 2004, 23, 4. [Google Scholar]
- Yin, H. Research on conductor surface potential measurement based on electrostatic controlled torsion pendulum scheme. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2015. [Google Scholar]
- Yu, T.; Wang, Y.; Liu, Y.; Wang, Z. High-Precision Inertial Sensor Charge Management Based on Ultraviolet Discharge: A Comprehensive Review. Sensors 2023, 23, 7794. [Google Scholar] [CrossRef] [PubMed]
- Armano, M.; Audley, H.; Baird, J.; Born, M.; Bortoluzzi, D.; Cardines, N.; Castelli, E.; Cavalleri, A.; Cesarini, A.; Cruise, A.; et al. Analysis of the accuracy of actuation electronics in the laser interferometer space antenna pathfinder. Rev. Sci. Instrum. 2020, 91, 045003. [Google Scholar] [CrossRef] [PubMed]
- Mance, D. Development of Electronic System for Sensing and Actuation of Test Mass of the Inertial Sensor LISA. Master’s Thesis, University of Split, Split, Croatia, 2012. [Google Scholar]
- Tombolato, D. A Laboratory Study of Force Disturbances for the LISA Pathfinder Free Fall Demonstration Mission. Ph.D. Thesis, University of Trento, Trento, Italy, 2008. [Google Scholar]
- Ke, G. Research on a Rapid Acquisition System for Electrical Impedance Imaging. Master’s Thesis, Chongqing University, Chongqing, China, 2009. [Google Scholar]
- Chai, M. Research and Application of Capacitance Coupled Resistance Tomography System Based on Digital Phase Sensitive Demodulation Technology. Master’s Thesis, Zhejiang University, Hangzhou, China, 2014. [Google Scholar]
Parameter | Meaning | Value |
---|---|---|
m | the mass of TM | |
the total capacitance inside the EH | ||
the vacuum dielectric constant | ||
the distance between the TM and the electrodes when the TM is at the center of the EH | ||
b | the distance between the centers of the two electrodes on the same side | |
factor | ||
the rotational inertia of the torsion pendulum | ||
the damping coefficient | ||
Q | the quality factor of the torsion pendulum | 2900 |
the restoring stiffness of the suspension fiber | ||
free period of the torsion pendulum | ||
the intrinsic frequency of the torsion pendulum | ||
the absolute value of amplitude of the excitation applied to the electrodes | ||
the frequency of the excitation applied to the electrodes | ||
the damping ratio | ||
frequency normalisation |
PSD | Butterworth BPF | ChebyshevII BPF | Bessel BPF | ||
---|---|---|---|---|---|
in the ideal case | |||||
with noise introduced | |||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Yu, T.; Wang, Y.; Zhao, Z.; Wang, Z. High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation. Sensors 2024, 24, 1009. https://doi.org/10.3390/s24031009
Liu Y, Yu T, Wang Y, Zhao Z, Wang Z. High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation. Sensors. 2024; 24(3):1009. https://doi.org/10.3390/s24031009
Chicago/Turabian StyleLiu, Yang, Tao Yu, Yuhua Wang, Zihan Zhao, and Zhi Wang. 2024. "High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation" Sensors 24, no. 3: 1009. https://doi.org/10.3390/s24031009
APA StyleLiu, Y., Yu, T., Wang, Y., Zhao, Z., & Wang, Z. (2024). High-Precision Inertial Sensor Charge Ground Measurement Method Based on Phase-Sensitive Demodulation. Sensors, 24(3), 1009. https://doi.org/10.3390/s24031009