Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks
Abstract
:1. Introduction
2. System Model
3. Neural Network-Based Handover Method
3.1. Network Architecture
3.2. Dataset Generation
3.3. Training and Testing
3.4. Simulation
4. Results and Discussion
4.1. Handover Accuracy
4.2. User Throughput and QoS
4.3. Reliability
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- You, X.; Wang, C.-X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J.; et al. Towards 6G Wireless Communication Networks: Vision, Enabling Technologies, and New Paradigm Shifts. Sci. China Inf. Sci. 2021, 64, 110301. [Google Scholar] [CrossRef]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, Investments, and Challenges for Enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Besjedica, T.; Fertalj, K.; Lipovac, V.; Zakarija, I. Evolution of Hybrid LiFi–WiFi Networks: A Survey. Sensors 2023, 23, 4252. [Google Scholar] [CrossRef] [PubMed]
- Dang, S.; Amin, O.; Shihada, B.; Alouini, M.-S. What Should 6G Be? Nat. Electron. 2020, 3, 20–29. [Google Scholar] [CrossRef]
- Rehman, S.U.; Ullah, S.; Chong, P.H.J.; Yongchareon, S.; Komosny, D. Visible Light Communication: A System Perspective—Overview and Challenges. Sensors 2019, 19, 1153. [Google Scholar] [CrossRef] [PubMed]
- Rahaim, M.B.; Vegni, A.M.; Little, T.D.C. A Hybrid Radio Frequency and Broadcast Visible Light Communication System. In Proceedings of the 2011 IEEE GLOBECOM Workshops (GC Wkshps), Houston, TX, USA, 5–9 December 2011; pp. 792–796. [Google Scholar] [CrossRef]
- Haas, H.; Yin, L.; Wang, Y.; Chen, C. What Is LiFi? J. Light. Technol. 2016, 34, 1533–1544. [Google Scholar] [CrossRef]
- Islim, M.S.; Ferreira, R.X.; He, X.; Xie, E.; Videv, S.; Viola, S.; Watson, S.; Bamiedakis, N.; Penty, R.V.; White, I.H.; et al. Towards 10 Gb/s Orthogonal Frequency Division Multiplexing-Based Visible Light Communication Using a GaN Violet Micro-LED. Photon. Res. PRJ 2017, 5, A35–A43. [Google Scholar] [CrossRef]
- Arfaoui, M.A.; Soltani, M.D.; Tavakkolnia, I.; Ghrayeb, A.; Assi, C.M.; Safari, M.; Haas, H. Invoking Deep Learning for Joint Estimation of Indoor LiFi User Position and Orientation. IEEE J. Sel. Areas Commun. 2021, 39, 2890–2905. [Google Scholar] [CrossRef]
- Paramita, S.; Srivastava, A.; Bohara, V.A.; Mitra, A.; Atluri, H.K.; Paventhan, A. Demo of Hybrid LiFi/WiFi Network for an Indoor Environment. In Proceedings of the 2023 15th International Conference on Communication Systems & Networks (COMSNETS), Bangalore, India, 3–8 January 2023; pp. 213–215. [Google Scholar] [CrossRef]
- Matheus, L.E.M.; Vieira, A.B.; Vieira, L.F.M.; Vieira, M.A.M.; Gnawali, O. Visible Light Communication: Concepts, Applications and Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3204–3237. [Google Scholar] [CrossRef]
- Elgala, H.; Mesleh, R.; Haas, H. Indoor Optical Wireless Communication: Potential and State-of-the-Art. IEEE Commun. Mag. 2011, 49, 56–62. [Google Scholar] [CrossRef]
- Soltani, M.D.; Kazemi, H.; Safari, M.; Haas, H. Handover Modeling for Indoor Li-Fi Cellular Networks: The Effects of Receiver Mobility and Rotation. In Proceedings of the 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, USA, 19–22 March 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, X.; Soltani, M.D.; Zhou, L.; Safari, M.; Haas, H. Hybrid LiFi and WiFi Networks: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 1398–1420. [Google Scholar] [CrossRef]
- Wu, X.; O’Brien, D.C. A Novel Machine Learning-Based Handover Scheme for Hybrid LiFi and WiFi Networks. In Proceedings of the 2020 IEEE Globecom Workshops, Taipei, Taiwan, 7–11 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Ma, G.; Parthiban, R.; Karmakar, N. An Adaptive Handover Scheme for Hybrid LiFi and WiFi Networks. IEEE Access 2022, 10, 18955–18965. [Google Scholar] [CrossRef]
- Hou, J.; O’Brien, D.C. Vertical Handover-Decision-Making Algorithm Using Fuzzy Logic for the Integrated Radio-and-OW System. IEEE Trans. Wirel. Commun. 2006, 5, 176–185. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Haas, H. Fuzzy Logic Based Dynamic Handover Scheme for Indoor Li-Fi and RF Hybrid Network. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Qian, C.; Dai, L.; Yang, Z. Efficient Vertical Handover Scheme for Heterogeneous VLC-RF Systems. J. Opt. Commun. Netw. JOCN 2015, 7, 1172–1180. [Google Scholar] [CrossRef]
- Stevens-Navarro, E.; Wong, V.W.S.; Lin, Y. A Vertical Handoff Decision Algorithm for Heterogeneous Wireless Networks. In Proceedings of the 2007 IEEE Wireless Communications and Networking Conference, Hong Kong, China, 11–15 March 2007; pp. 3199–3204. [Google Scholar] [CrossRef]
- Niyato, D.; Hossain, E. Dynamics of Network Selection in Heterogeneous Wireless Networks: An Evolutionary Game Approach. IEEE Trans. Veh. Technol. 2009, 58, 2008–2017. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, Y.; Fan, B.; Tian, H. Multi-Attribute Vertical Handover Decision-Making Algorithm in a Hybrid VLC-Femto System. IEEE Commun. Lett. 2017, 21, 1521–1524. [Google Scholar] [CrossRef]
- Ma, G.; Parthiban, R.; Karmakar, N. Novel Handover Algorithms Using Pattern Recognition for Hybrid LiFi Networks. In Proceedings of the 2022 IEEE Symposium on Computers and Communications (ISCC Rhodes), Rhodes, Greece, 30 June–3 July 2022; pp. 1–7. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, M.; Zhou, Y.; Huang, Y.; Mao, S. Application of Machine Learning in Wireless Networks: Key Techniques and Open Issues. IEEE Commun. Surv. Tutor. 2019, 21, 3072–3108. [Google Scholar] [CrossRef]
- Ye, H.; Li, G.Y.; Juang, B.-H.F. Deep Reinforcement Learning Based Resource Allocation for V2V Communications. IEEE Trans. Veh. Technol. 2019, 68, 3163–3173. [Google Scholar] [CrossRef]
- Alshaer, H.; Haas, H. SDN-Enabled Li-Fi/Wi-Fi Wireless Medium Access Technologies Integration Framework. In Proceedings of the 2016 IEEE Conference on Standards for Communications and Networking (CSCN), Berlin, Germany, 31 October–2 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Cossu, G.; Corsini, R.; Ciaramella, E. High-Speed Bi-Directional Optical Wireless System in Non-Directed Line-of-Sight Configuration. J. Light. Technol. 2014, 32, 2035–2040. [Google Scholar] [CrossRef]
- Wu, X.; O’Brien, D.C.; Deng, X.; Linnartz, J.-P.M.G. Smart Handover for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2020, 19, 8211–8219. [Google Scholar] [CrossRef]
- Shao, S.; Liu, G.; Khreishah, A.; Ayyash, M.; Elgala, H.; Little, T.D.C.; Rahaim, M. Optimizing Handover Parameters by Q-Learning for Heterogeneous Radio-Optical Networks. IEEE Photonics J. 2020, 12, 1–15. [Google Scholar] [CrossRef]
- Yin, L.; Wu, X.; Haas, H. Indoor Visible Light Positioning with Angle Diversity Transmitter. In Proceedings of the 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, USA, 6–9 September 2015; pp. 1–5. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by Superpositions of a Sigmoidal Function. Math. Control. Signal Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Alotaibi, N.M.; Alwakeel, S.S. A Neural Network Based Handover Management Strategy for Heterogeneous Networks. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 1210–1214. [Google Scholar] [CrossRef]
- Ji, H.; Wu, X.; Wang, Q.; Redmond, S.J.; Tavakkolnia, I. Adaptive Target-Condition Neural Network: DNN-Aided Load Balancing for Hybrid LiFi and WiFi Networks. IEEE Trans. Wirel. Commun. 2023. [Google Scholar] [CrossRef]
- Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2017, arXiv:1609.04747. [Google Scholar] [CrossRef]
- Fawcett, T. An Introduction to ROC Analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Wu, X.; Safari, M.; Haas, H. Access Point Selection for Hybrid Li-Fi and Wi-Fi Networks. IEEE Trans. Commun. 2017, 65, 5375–5385. [Google Scholar] [CrossRef]
WiFi Simulation Parameters | LiFi Simulation Parameters | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
Career Frequency | 2.4 GHz | Room Size | (18 × 18 × 3) m3 |
Transmitted Power | 20 dBm | No. of APs | 36 |
Breaking-Point Distance | 10 m | Semi Angle of Half Power | 60° |
Shadowing Fading St. Dev LOS/NLOS | 3 dB/5 dB | Transmitted Power | 9 W |
Arrival/Departure Angle | 45 degrees | Optical Gain | 1 |
Noise PSD | −174 dBm/Hz | Noise PSD | 10−21 A2/Hz |
Bandwidth | 20 MHz | Bandwidth | 40 MHz |
Modulation | 64 QAM | Detector Responsivity | 0.53 A/W |
Precision | Recall | Accuracy | F1 Score | |
---|---|---|---|---|
K-LR | 75.60% | 82.12% | 90.60% | 0.79 |
K-SVM | 77.70% | 83.45% | 91.40% | 0.80 |
ANN | 74.70% | 65.25% | 83.24% | 0.70 |
FDDN | 91.27% | 91.28% | 96.00% | 0.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.U.A.; Babar, M.I.; Rehman, S.U.; Komosny, D.; Chong, P.H.J. Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks. Sensors 2024, 24, 2021. https://doi.org/10.3390/s24072021
Khan MUA, Babar MI, Rehman SU, Komosny D, Chong PHJ. Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks. Sensors. 2024; 24(7):2021. https://doi.org/10.3390/s24072021
Chicago/Turabian StyleKhan, Mohammad Usman Ali, Mohammad Inayatullah Babar, Saeed Ur Rehman, Dan Komosny, and Peter Han Joo Chong. 2024. "Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks" Sensors 24, no. 7: 2021. https://doi.org/10.3390/s24072021
APA StyleKhan, M. U. A., Babar, M. I., Rehman, S. U., Komosny, D., & Chong, P. H. J. (2024). Optimizing Wireless Connectivity: A Deep Neural Network-Based Handover Approach for Hybrid LiFi and WiFi Networks. Sensors, 24(7), 2021. https://doi.org/10.3390/s24072021