Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Conductive Core-sheath TiO2-PEDOT Nanocables
2.2. Gas Sensing Performance
3. Experimental Section
3.1. Materials
3.2. Fabrication of TiO2 Nanofibers
3.3. Synthesis of Conductive Core-sheath TiO2-PEDOT Nanocables
3.4. Characterization of TiO2 Nanofibers and TiO2-PEDOT Nanocables
3.5. Gas Sensing
4. Conclusions
Acknowledgments
References and Notes
- Nair, S.; Hsiao, E.; Kim, S.H. Fabrication of electrically-conducting nonwoven porous mats of polystyrene-polypyrrole core-shell nanofibers via electrospinning and vapor phase polymerization. J. Mater. Chem 2008, 18, 5155–5161. [Google Scholar]
- Cao, H.Q.; Xu, Y.; Hong, J.M.; Liu, H.B.; Yin, G.; Li, B.L.; Tie, C.Y.; Xu, Z. Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template. Adv. Mater 2001, 13, 1393–1394. [Google Scholar]
- Jang, J.; Bae, J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens. Actua. B 2007, 122, 7–13. [Google Scholar]
- Rao, C.N.R.; Satishkumar, B.C.; Govindaraj, A. Zirconia nanotubes. Chem. Commun 1997, 16, 1581–1582. [Google Scholar]
- Hoyer, P. Formation of a titanium dioxide nanotube array. Langmuir 1996, 12, 1411–1413. [Google Scholar]
- Lu, X.F.; Zhao, Q.D.; Liu, X.C.; Wang, D.J.; Zhang, W.J.; Wang, C.; Wei, Y. Preparation and characterization of polypyrrole/TiO2 coaxial nanocables. Macromol. Rapid Commun 2006, 27, 430–434. [Google Scholar]
- Greiner, A.; Wendorff, J.H. Electrospinning: a fascinating method for the preparation of ultrathin fibres. Angew. Chem. Int. Ed 2007, 46, 5670–5703. [Google Scholar]
- Swager, T.M. The molecular wire approach to sensory signal amplification. Acc. Chem. Res 1998, 31, 201–207. [Google Scholar]
- Kvarnstrom, C.; Neugebauer, H.; Blomquist, S.; Ahonen, H.J.; Kankare, J.; Ivaska, A. In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim. Acta 1999, 44, 2739–2750. [Google Scholar]
- Selvaganesh, S.V.; Mathiyarasu, J.; Phani, K.L.N.; Yegnaraman, V. Chemical synthesis of PEDOT-Au nanocomposite. Nanoscale Res. Lett 2007, 2, 546–549. [Google Scholar]
- Roncali, J.; Blanchard, P.; Frere, P. 3,4-Ethylenedioxythiophene (EDOT) as a versatile building block for advanced functional p-conjugated systems. J. Mater. Chem 2005, 15, 1589–1610. [Google Scholar]
- Groenendaal, B.L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J.R. Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater 2000, 12, 481–494. [Google Scholar]
- Yamato, H.; Ohwa, M.; Wernet, W. Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J. Electroanal. Chem 1995, 397, 163–170. [Google Scholar]
- Vazquez, M.; Bobacka, J.; Ivaska, A.; Lewenstam, A. Influence of oxygen and carbon dioxide on the electrochemical stability of poly(3,4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sens. Actuat. B 2002, 82, 7–13. [Google Scholar]
- Jang, J.; Chang, M.; Yoon, H. Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Adv. Mater 2005, 17, 1616–1625. [Google Scholar]
- Yang, Y.J.; Jiang, Y.D.; Xu, J.H.; Yu, J.S. Preparation and properties of multilayer poly(3,4-ethylenedioxythiophene) Langmuir-Blodgett film. Thin Solid Films 2008, 516, 2120–2124. [Google Scholar]
- Xu, J.H.; Jiang, Y.D.; Yang, Y.J.; Yu, J.S. Self-assembly of conducting polymer nanowires at air-water interface and its application for gas sensors. Mater. Sci. Eng. B 2009, 157, 87–92. [Google Scholar]
- Yang, Y.J.; Jiang, Y.D.; Xu, J.H.; Yu, J.S. Conducting polymeric nanoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance. Polymer 2007, 48, 4459–4465. [Google Scholar]
- Wang, Y.J.; Coti, K.K.; Jun, W.; Alam, M.M.; Shyue, J.J.; Lu, W.X.; Padture, N.P.; Tseng, H.R. Individually addressable crystalline conducting polymer nanowires in a microelectrode sensor array. Nanotechnology 2007, 18, 424021. [Google Scholar]
- Yoon, H.; Chang, M.; Jang, J. Formation of 1D poly(3,4-ethylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors. Adv. Funct. Mater 2007, 17, 431–436. [Google Scholar]
- Mabrook, M.F.; Pearson, C.; Petty, M.C. Inkjet-printed polymer films for the detection of organic vapors. IEEE Sensors J 2006, 6, 1435–1444. [Google Scholar]
- Lu, H.H.; Lin, C.Y.; Hsiao, T.C.; Fang, Y.Y.; Ho, K.C.; Yang, D.F.; Lee, C.K.; Hsu, S.M.; Lin, C.W. Electrical properties of single and multiple poly(3,4-ethylenedioxythiophene) nanowires for sensing nitric oxide gas. Anal. Chim. Acta 2009, 640, 68–74. [Google Scholar]
- Luo, S.C.; Yu, H.H.; Wan, A.C.A.; Han, Y.; Ying, J.Y. A general synthesis for PEDOT-coated nonconductive materials and PEDOT hollow particles by aqueous chemical polymerization. Small 2008, 4, 2051–2058. [Google Scholar]
- Wang, Y.; Jia, W.Z.; Strout, T.; Schempf, A.; Zhang, H.; Li, B.K.; Cui, J.H.; Lei, Y. Ammonia gas sensor using polypyrrole-coated TiO2/ZnO. Electroanalysis 2009, 21, 1432–1438. [Google Scholar]
- Li, D.; Xia, Y.N. Fabrication of titania nanofibers by electrospinning. Nano Lett 2003, 3, 555–560. [Google Scholar]
- Im, S.G.; Gleason, K.K. Systematic control of the electrical conductivity of poly(3,4-ethylenedioxythiophene) via oxidative chemical vapor deposition. Macromolecules 2007, 40, 6552–6556. [Google Scholar]
- Bright, E.; Readey, D.W. Dissolution kinetics of TiO2 in HF-HCl solutions. J. Am. Ceram. Soc 1987, 70, 900–906. [Google Scholar]
- Hernandez, S.C.; Chaudhuri, D.; Chen, W.; Myung, N.V.; Mulchandani, A. Single polypyrrole nanowire ammonia gas sensor. Electroanalysis 2007, 19, 2125–2130. [Google Scholar]
- Bobacka, J.; Lewenstam, A.; Ivaska, A. Electrochemical impedance spectroscopy of oxidized poly(3,4-ethylenedioxythiophene) film electrodes in aqueous solutions. J. Electroanal. Chem 2000, 489, 17–27. [Google Scholar]
- Pettersson, L.A.A.; Carlsson, F.; Inganas, O.; Arwin, H. Spectroscopic ellipsometry studies of the optical properties of doped poly(3,4-ethylenedioxythiophene): an anisotropic metal. Thin Solid Films 1998, 313, 356–361. [Google Scholar]
- Yu, J.G.; Yu, H.G.; Cheng, B.; Zhao, X.J.; Yu, J.C.; Ho, W.K. The effect of calcination temperature on the surface microstructure and photocatalytic activity of TiO2 thin films prepared by liquid phase deposition. J. Phys. Chem. B 2003, 107, 13871–13879. [Google Scholar]
- Singh, K.; Ohlan, A.; Saini, P.; Dhawan, S.K. Poly(3,4-ethylenedioxythiophene) gamma-Fe2O3 polymer composite-super paramagnetic behavior and variable range hopping 1D conduction mechanism-synthesis and characterization. Polym. Adv. Technol 2008, 19, 229–236. [Google Scholar]
- Meng, H.; Perepichka, D.F.; Bendikov, M.; Wudl, F.; Pan, G.Z.; Yu, W.J.; Dong, W.J.; Brown, S. Solid-state synthesis of a conducting polythiophene via an unprecedented heterocyclic coupling reaction. J. Am. Chem. Soc 2003, 125, 15151–15162. [Google Scholar]
- Ram, M.K.; Yavuz, O.; Aldissi, M. NO2 gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite. Synth. Met 2005, 151, 77–84. [Google Scholar]
- Liu, H.Q.; Kameoka, J.; Czaplewski, D.A.; Craighead, H.G. Polymeric nanowire chemical sensor. Nano Lett 2004, 4, 671–675. [Google Scholar]
© 2009 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Wang, Y.; Jia, W.; Strout, T.; Ding, Y.; Lei, Y. Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables. Sensors 2009, 9, 6752-6763. https://doi.org/10.3390/s90906752
Wang Y, Jia W, Strout T, Ding Y, Lei Y. Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables. Sensors. 2009; 9(9):6752-6763. https://doi.org/10.3390/s90906752
Chicago/Turabian StyleWang, Ying, Wenzhao Jia, Timothy Strout, Yu Ding, and Yu Lei. 2009. "Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables" Sensors 9, no. 9: 6752-6763. https://doi.org/10.3390/s90906752
APA StyleWang, Y., Jia, W., Strout, T., Ding, Y., & Lei, Y. (2009). Preparation, Characterization and Sensitive Gas Sensing of Conductive Core-sheath TiO2-PEDOT Nanocables. Sensors, 9(9), 6752-6763. https://doi.org/10.3390/s90906752