Variance and Semi-Variances of Regular Interval Type-2 Fuzzy Variables
Abstract
:1. Introduction
2. Preliminaries
2.1. Interval Type-2 Fuzzy Sets
2.2. The Membership Function of the RSTIT2-FV
2.3. The Credibility Distribution of the RSTIT2-FV
2.4. The Expected Value, Variance and Semi-Variances of the Fuzzy Variable
3. The Variance of the RIT2-FV
4. The Semi-Variances of an RIT2-FV
4.1. Calculation Formula for the Semi-Variances of the RIT2-FV
4.2. The Relationships between the Variance and Semi-Variances
5. Operational Law
5.1. Independence
5.2. Operational Law for the RSTIT2-FVs
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Dubois, D.; Prade, H. Twofold fuzzy sets: An approach to the representation of sets with fuzzy boundaries based on possibility and necessity measures. J. Fuzzy Math. 1983, 3, 53–76. [Google Scholar]
- Liu, B. Toward fuzzy optimization without mathematical ambiguity. Fuzzy Optim. Decis. Mak. 2002, 1, 43–63. [Google Scholar] [CrossRef]
- Robert, F.; Peter, M. On weighted possibilistic mean and variance of fuzzy numbers. Fuzzy Set Syst. 2002, 136, 363–374. [Google Scholar]
- Wu, H.C. Analysis of variance for fuzzy data. Int. J. Syst. Sci. 2007, 3, 235–246. [Google Scholar] [CrossRef]
- Tsao, C.T. The revised algorithms of fuzzy variance and an application to portfolio selection. Soft Comput. 2010, 14, 329–337. [Google Scholar] [CrossRef]
- Gong, Y.B.; Hu, N.; Liu, G.F. A new magnitude possibilistic mean value and variance of fuzzy numbers. J. Intell. Fuzzy Syst. 2016, 18, 140–150. [Google Scholar]
- Gu, Y.; Hao, Q.; Shen, J.; Zhang, X.; Yu, L. Calculation formulas and correlation inequalities for variance bounds and semi-variances of fuzzy intervals. J. Intell. Fuzzy Syst. 2019, 36, 353–369. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Sun, D.F. Some notes on possibilistic variances of generalized trapezoidal intuitionistic fuzzy numbers. AIMS Math. 2021, 6, 3720–3740. [Google Scholar] [CrossRef]
- Thavaneswaran, A.; Appadoo, S.S.; Paseka, A. Weighted possibilistic moments of fuzzy numbers with applications to GARCH modeling and option pricing. Math. Comput. Model. 2009, 49, 352–368. [Google Scholar] [CrossRef]
- Pahade, J.K.; Jha, M. Credibilistic variance and skewness of trapezoidal fuzzy variable and meanvariance-skewness model for portfolio selection. Results Appl. Math. 2021, 11, 1001509. [Google Scholar] [CrossRef]
- Ibrahim, H.Z.; Al-Shami, T.M.; Elbarbary, O.G. (3, 2)-Fuzzy Sets and Their Applications to Topology and Optimal Choices. Comput. Intel. Neurosci. 2021, 2021, 1272266. [Google Scholar] [CrossRef]
- Atef, M.; Ali, M.I.; Al-shami, T.M. Fuzzy soft covering-based multi-granulation fuzzy rough sets and their applications. Comput. Appl. Math. 2021, 40, 1–26. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–251. [Google Scholar] [CrossRef]
- El Baf, F.; Bouwmans, T.; Vachon, B. Type-2 fuzzy mixture of Gaussians model: Application to background modeling. In Proceedings of the International Symposium on Visual Computing, Las Vegas, NV, USA, 1–3 December 2008; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Shu, H.; Liang, Q.; Gao, J. Wireless sensor network lifetime analysis using interval type-2 fuzzy logic systems. IEEE Trans. Fuzzy Syst. 2008, 16, 416–427. [Google Scholar]
- Mohagheghi, V.; Mousavi, S.M.; Vahdani, B.; Shahriari, M.R. R&D project evaluation and project portfolio selection by a new interval type-2 fuzzy optimization approach. Neural Comput. Appl. 2017, 28, 3869–3888. [Google Scholar]
- Guo, J.; Du, S. Modeling words for qualitative distance based on interval type-2 fuzzy sets. ISPRS. Int. J. Geo-Inf. 2018, 7, 291. [Google Scholar] [CrossRef] [Green Version]
- Deveci, M.; Pekaslan, D.; Canıtez, F. The assessment of smart city projects using zslice type-2 fuzzy sets based interval agreement method. Sustain. Cites Soc. 2020, 53, 101889. [Google Scholar] [CrossRef]
- Deveci, M.; Öner, S.C.; Ciftci, M.E.; Özcan, E.; Pamucar, D. Interval type-2 hesitant fuzzy entropy-based WASPAS approach for aircraft type selection. Appl. Soft Comput. 2022, 114, 108076. [Google Scholar] [CrossRef]
- Wu, D.; Mendel, J.M. Uncertainty measures for interval type-2 fuzzy sets. Inf. Sci. 2007, 177, 5378–5393. [Google Scholar] [CrossRef]
- Zhai, D.Y.; Mendel, J.M. Uncertainty measures for general type-2 fuzzy sets. Inf. Sci. 2011, 181, 503–518. [Google Scholar] [CrossRef]
- Wei, Y.; Watada, J.; Pedrycz, W. Design of a qualitative classification model through fuzzy support vector machine with type-2 fuzzy expected regression classifier preset. IEEJ. Trans. Electr. Electr. Eng. 2016, 11, 348–356. [Google Scholar] [CrossRef]
- Gong, Y.B.; Yang, S.X.; Dai, L.L.; Hu, N. A new approach for ranking of interval type-2 trapezoidal fuzzy numbers. J. Intell. Fuzzy Syst. 2017, 32, 1891–1902. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, H.T.; Huang, J.A. A constrained representation theorem for well-shaped interval type-2 fuzzy sets, and the corresponding constrained uncertainty measures. IEEE Trans. Fuzzy Syst. 2018, 27, 1237–1251. [Google Scholar] [CrossRef]
- Tolga, A.C. Real options valuation of an IoT based healthcare device with interval type-2 fuzzy numbers. Soc.-Econ. Plan. Sci. 2019, 69, 100693. [Google Scholar] [CrossRef]
- Li, H.; Cai, J. Arithmetic operations and expected Values of regular interval type-2 fuzzy variables. Symmetry 2021, 13, 2196. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Dubois, D.; Prade, H. Operations on fuzzy numbers. Int. J. Syst. Sci. 1978, 9, 613–626. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, F.; Wang, K. Fuzzy arithmetic on LR fuzzy numbers with applications to fuzzy programming. J. Intell. Fuzzy Syst. 2016, 30, 71–87. [Google Scholar] [CrossRef]
- Mendel, J.M.; John, R.I. Type-2 fuzzy sets made simple. IEEE Trans. Fuzzy Syst. 2002, 10, 117–127. [Google Scholar] [CrossRef]
- Liu, B. Uncertainty Theory: An Introduction to Its Axiomatic Foundations; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Liu, B. Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Huang, X. Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Mathem. 2008, 217, 1–8. [Google Scholar] [CrossRef] [Green Version]
Type-1 Fuzzy Set | Type-2 Fuzzy Set | ||
---|---|---|---|
Literature | Formula | Literature | Formula |
Robert and Peter (2003) | Wu and Mendel (2007) | ||
Gong et al. (2016) | Wei et al. (2016) | ||
Wu et al. (2018) | |||
Gu et al. (2019) | Gong et al. (2017) | ||
Tolga (2020) | |||
Zhang (2019) | This paper |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Chen, Y. Variance and Semi-Variances of Regular Interval Type-2 Fuzzy Variables. Symmetry 2022, 14, 278. https://doi.org/10.3390/sym14020278
Tang W, Chen Y. Variance and Semi-Variances of Regular Interval Type-2 Fuzzy Variables. Symmetry. 2022; 14(2):278. https://doi.org/10.3390/sym14020278
Chicago/Turabian StyleTang, Wenjing, and Yitao Chen. 2022. "Variance and Semi-Variances of Regular Interval Type-2 Fuzzy Variables" Symmetry 14, no. 2: 278. https://doi.org/10.3390/sym14020278
APA StyleTang, W., & Chen, Y. (2022). Variance and Semi-Variances of Regular Interval Type-2 Fuzzy Variables. Symmetry, 14(2), 278. https://doi.org/10.3390/sym14020278