Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function
Abstract
:1. Introduction
2. Preliminaries
3. The Class
4. Estimates of the Family
5. Corollaries and Consequences
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bain, L.; Engelhardt, M. Introduction to Probability and Mathematical Statistics; Duxburry Press: Belmont, CA, USA, 1992. [Google Scholar]
- Legendre, A. Recherches sur la Attraction des Sphéroides Homogénes; Mémoires Présentes par Divers Savants a la Académie des Sciences de la Institut de France: France, Paris, 1785; pp. 411–434. [Google Scholar]
- Bateman, H. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953. [Google Scholar]
- Kiepiela, K.; Naraniecka, I.; Szynal, J. The Gegenbauer polynomials and typically real functions. J. Comput. Appl. Math. 2003, 2, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Askey, R.; Ismail, M.E.H. A Generalization of Ultraspherical Polynomials, Studies of Pure Mathematics; Birkhauser: Boston, MA, USA, 1983. [Google Scholar]
- Sakar, F.M.; Hussain, S.; Ahmed, I. Application of Gegenbauer polynomials for bi-univalent functions defined by subordination. Turk. J. Math. 2022, 46, 1089–1098. [Google Scholar] [CrossRef]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and bi-univalent functions. Palest. J. Math. 2021, 2, 625–632. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials. J. Funct. Spaces 2021, 2021, 5574673. [Google Scholar]
- Miller, S.S.; Mocanu, P.T. Second Order Differential Inequalities in the Complex Plane. J. Math. Anal. Appl. 1978, 65, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations and Univalent Functions. Mich. Math. J. 1981, 28, 157–172. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 1, 71–82. [Google Scholar] [CrossRef]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Ul Haq, A. An application of binomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 1, 11–17. [Google Scholar]
- Charalambides, C.A.; Papadatos, N. The q-factorial moments of discrete q-distribution and a characterization of the Euler distribution. In Advances on Models, Characterizations and Applications; Chapman and Hall: London, UK, 2005; pp. 57–71. [Google Scholar]
- Amourah, A.; Alomari, M.; Yousef, F.; Alsoboh, A. Consolidation of a Certain Discrete Probability Distribution with a Subclass of Bi-Univalent Functions Involving Gegenbauer Polynomials. Math. Probl. Eng. 2022, 2022, 6354994. [Google Scholar] [CrossRef]
- Shammaky, A.E.; Frasin, B.A.; Seoudy, T.M. Subclass of Analytic Functions Related with Pascal Distribution Series. J. Math. 2022, 2022, 8355285. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Park, C.; Lee, J.R. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function. AIMS Math. 2022, 7, 11772–11783. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M.; Alb Lupaş, A. A class of Janowski-type (p, q)-convex harmonic functions involving a generalized q-Mittag-Leffler function. Axioms 2023, 12, 190. [Google Scholar] [CrossRef]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy Differential Subordinations Based upon the Mittag-Leffler Type Borel Distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Bansal, D.; Prajapat, J.K. Certain geometric properties of the Mittag-Leffler functions. Complex Var. Elliptic Equ. 2016, 3, 338–350. [Google Scholar] [CrossRef]
- Noreen, S.; Raza, M.; Malik, S.N. Certain geometric properties of Mittag-Leffler functions. J. Inequal. Appl. 2019, 94, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Amourah, A.; Alsoboh, A.; Ogilat, O.; Gharib, G.M.; Saadeh, R.; Al Soudi, M. A Generalization of Gegenbauer Polynomials and Bi-Univalent Functions. Axioms 2023, 12, 128. [Google Scholar] [CrossRef]
- Bulut, S.; Magesh, N.; Abirami, C. A comprehensive class of analytic bi-univalent functions by means of Chebyshev polynomials. J. Fract. Calc. Appl. 2017, 2, 32–39. [Google Scholar]
- Peng, Z.; Murugusundaramoorthy, G.; Janani, T. Coefficient estimate of bi-univalent functions of complex order associated with the Hohlov operator. J. Complex Anal. 2014, 2014, 693908. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 10, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Buyankara, M.; Çağlar, M.; Cotîrlă, L.I. New Subclasses of Bi-Univalent Functions with Respect to the Symmetric Points Defined by Bernoulli Polynomials. Axioms 2022, 11, 652. [Google Scholar] [CrossRef]
- Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Çağlar, M. Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials. Appl. Math. Sci. Eng. 2022, 1, 501–520. [Google Scholar] [CrossRef]
- Çağlar, M.; Cotîrlă, L.I.; Buyankara, M. Fekete–Szegö Inequalities for a New Subclass of Bi-Univalent Functions Associated with Gegenbauer Polynomials. Symmetry 2022, 14, 1572. [Google Scholar] [CrossRef]
- Buyankara, M.; Çağlar, M. On Fekete-Szegö problem for a new subclass of bi-univalent functions defined by Bernoulli polynomials. Acta Univ. Apulensis 2022, 71, 137–145. [Google Scholar]
- Çağlar, M. Fekete-Szegö problem for a subclass of analytic functions associated with Chebyshev polynomials. Bol. Soc. Parana. Mat. 2022, 40, 01–06. [Google Scholar] [CrossRef]
- Hadi, S.H.; Darus, M. (p, q)-Chebyshev polynomials for the families of biunivalent function associating a new integral operator with (p, q)-Hurwitz zeta function. Turk. J. Math. 2022, 6, 25. [Google Scholar] [CrossRef]
- Çağlar, M. Chebyshev polynomial coefficient bounds for a subclass of bi-univalent functions. CR Acad. Bulg. Sci. 2019, 72, 1608–1615. [Google Scholar]
- Venkateswarlu, B.; Thirupathi Reddy, P.; Altınkaya, Ş.; Boonsatit, N.; Hammachukiattikul, P.; Sujatha, V. On a Certain Subclass of Analytic Functions Defined by Touchard Polynomials. Symmetry 2022, 14, 838. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete–Szegö problems for certain subclasses of analytic functions defined by differential operator involving-Ruscheweyh Operator. J. Funct. Spaces 2020, 2020, 8459405. [Google Scholar] [CrossRef] [Green Version]
- Al-Hawary, T.; Amourah, A.; Alsoboh, A.; Alsalhi, O. A new comprehensive subclass of analytic bi-univalent functions related to gegenbauer polynomials. Symmetry 2023, 15, 576. [Google Scholar] [CrossRef]
- Kamali, M.; Çağlar, M.; Deniz, E.; Turabaev, M. Fekete-Szegö problem for a new subclass of analytic functions satisfying subordinate condition associated with Chebyshev polynomials. Turk. J. Math. 2021, 3, 1195–1208. [Google Scholar] [CrossRef]
- Alatawi, A.A.; Darus, M. On a certain subclass of analytic functions involving the modified q-Opoola derivative operator. Int. J. Nonlinear Anal. Appl. 2023, in press.
- Kazmoğlu, S.; Deniz, E. Fekete-Szegö problem for generalized bi-subordinate functions of complex order. Hacet. J. Math. Stat. 2020, 49, 1695–1705. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E.; Jahangiri, J.M.; Kına, S.K.; Hamidi, S.G. Faber polynomial coe¢ cients for generalized bi-subordinate functions of complex order. J. Math. Ineq. 2018, 12, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E.; Kamali, M.; Korkmaz, S. A certain subclass of bi-univalent functions associated with Bell numbers and q-Srivastava Attiya operator. AIMS Math. 2020, 5, 7259–7271. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Ahmad, M.; Yousef, F. Exploiting the Pascal Distribution Series and Gegenbauer Polynomials to Construct and Study a New Subclass of Analytic Bi-Univalent Functions. Symmetry 2022, 14, 147. [Google Scholar] [CrossRef]
- Alsoboh, A.; Darus, M. On Fekete-Szego Problem Associated with q-derivative Operator. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2019; Volume 1212, p. 012003. [Google Scholar]
- Alsoboh, A.; Amourah, A.; Darus, M.; Sharefeen, R.I.A. Applications of Neutrosophic q-Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions. Mathematics 2023, 11, 868. [Google Scholar] [CrossRef]
- Amourah, A.; Frasin, B.A.; Seoudy, T.M. An Application of Miller–Ross-Type Poisson Distribution on Certain Subclasses of Bi-Univalent Functions Subordinate to Gegenbauer Polynomials. Mathematics 2022, 10, 2462. [Google Scholar] [CrossRef]
- Wanas, A.K.; Sakar, F.M.; Oros, G.I.; Cotîrlă, L.-I. Toeplitz determinants for a certain family of analytic functions endowed with Borel distribution. Symmetry 2023, 15, 262. [Google Scholar] [CrossRef]
- Zaprawa, P. On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math.-Soc.-Simon Stevin 2014, 1, 169–178. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alatawi, A.; Darus, M.; Alamri, B. Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry 2023, 15, 785. https://doi.org/10.3390/sym15040785
Alatawi A, Darus M, Alamri B. Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry. 2023; 15(4):785. https://doi.org/10.3390/sym15040785
Chicago/Turabian StyleAlatawi, Abdullah, Maslina Darus, and Badriah Alamri. 2023. "Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function" Symmetry 15, no. 4: 785. https://doi.org/10.3390/sym15040785
APA StyleAlatawi, A., Darus, M., & Alamri, B. (2023). Applications of Gegenbauer Polynomials for Subfamilies of Bi-Univalent Functions Involving a Borel Distribution-Type Mittag-Leffler Function. Symmetry, 15(4), 785. https://doi.org/10.3390/sym15040785