Results on Second-Order Hankel Determinants for Convex Functions with Symmetric Points
Abstract
:1. Introduction and Definitions
- (i).
- (ii).
- (iii).
- (vi).
2. A Set of Lemmas
3. Coefficient Estimates on Function Belonging to the Class
4. Logarithmic Coefficient for
5. Inverse Coefficient for
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955. [Google Scholar]
- Löwner, K. Untersuchungen iiber schlichte konforme Abbildungen des Einheitskreises. Math. Ann. 1923, 89, 103–121. [Google Scholar] [CrossRef]
- Schaeffer, A.C.; Spencer, D.C. The coefficients of schlicht functions. Duke Math. J. 1943, 10, 611–635. [Google Scholar] [CrossRef]
- Jenkins, J.A. On certain coefficients of univalent functions II. Trans. Am. Math. Soc. 1960, 96, 534–545. [Google Scholar] [CrossRef]
- Garabedian, P.R.; Schiffer, M. A proof of the Bieberbach conjecture for the fourth coefficient. J. Ration. Mech. Anal. 1955, 4, 428–465. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent Functions; Vandenhoeck Ruprecht: Göttingen, Germany, 1975. [Google Scholar]
- Pederson, R.N.; Schiffer, M. A proof of the Bieberbach conjecture for the fifth coefficient. Arch. Ration. Mech. Anal. 1972, 45, 161–193. [Google Scholar] [CrossRef]
- Pederson, R.N. A proof of the Bieberbach conjecture for the sixth coefficient. Arch. Ration. Mech. Anal. 1968, 31, 331–351. [Google Scholar] [CrossRef] [Green Version]
- Ozawa, M. On the Bieberbach conjecture for the sixth coefficient. Kodai Math. Sem. Rep. 1969, 21, 97–128. [Google Scholar] [CrossRef]
- Ozawa, M. An elementary proof of the Bieberbach conjecture for the sixth coefficient. Kodai Math. Sem. Rep. 1969, 21, 129–132. [Google Scholar] [CrossRef]
- De-Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Conference Proceedings and Lecture Notes in Analysis, Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine function. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Arora, K.; Kumar, S.S. Starlike functions associated with a petal shaped domain. Bull. Korean Math. Soc. 2022, 59, 993–1010. [Google Scholar]
- Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [Google Scholar] [CrossRef]
- Ullah, K.; Zainab, S.; Arif, M.; Darus, M.; Shutaywi, M. Radius problems for starlike functions associated with the tan hyperbolic function. J. Funct. Spaces 2021, 2021, 9967640. [Google Scholar] [CrossRef]
- Gupta, P.; Nagpal, S.; Ravichandran, V. Inclusion relations and radius problems for a subclass of starlike functions. J. Korean Math. Soc. 2021, 58, 1147–1180. [Google Scholar]
- Gandhi, S.; Gupta, P.; Nagpal, S.; Ravichandran, V. Starlike functions associated with an epicycloid. Hacet. J. Math. Stat. 2022, 51, 1637–1660. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Saliu, A.; Catas, A.; Malik, S.N. Some geometrical results associated with secant hyperbolic functions. Mathematics 2022, 10, 14. [Google Scholar] [CrossRef]
- Saliu, A.; Al-Shbeil, I.; Gong, J.; Malik, S.N.; Aloraini, N. Properties of q-symmetric starlike functions of Janowski type. Symmetry 2022, 14, 1907. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Aloraini, N.; Mali, S.N. On q-limaçon functions. Symmetry 2022, 14, 2422. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-Shbeil, I.; Oladejo, S.O. Radius and differential subordination results for starlikeness associated with limaçon class. J. Funct. Spaces 2022, 2022, 8264693. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Banga, S.; Sivaprasad Kumar, S. The sharp bounds of the second and third Hankel determinants for the class SL*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Ebadian, A.; Bulboacă, T.; Cho, N.E.; Adegani, E.A. Coefficient bounds and differential subordinations for analytic functions associated with starlike functions. Rev. Real Acad. Cienc. Exactas FíSicasy Nat. Ser. Matemáticas 2020, 114, 128. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. 2007, 1, 619–625. [Google Scholar]
- Kowalczyk, B.; Lecko, A. Second Hankel determinant of logarithmic coefficients of convex and starlike functions. Bull. Aust. Math. Soc. 2022, 105, 458–467. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A. Second Hankel Determinant of logarithmic coefficients of convex and starlike functions of order alpha. Bull. Malays. Math. Sci. Soc. 2022, 45, 727–740. [Google Scholar] [CrossRef]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities Appl. 2013, 2013, 281. [Google Scholar] [CrossRef] [Green Version]
- Sim, Y.J.; Thomas, D.K.; Zaprawa, P. The second Hankel determinant for starlike and convex functions of order alpha. Complex Var. Elliptic Equ. 2020, 67, 2423–2443. [Google Scholar] [CrossRef]
- Sümer Eker, S.; Şeker, B.; Çekiç, B.; Acu, M. Sharp bounds for the second Hankel determinant of logarithmic coefficients for strongly starlike and strongly convex functions. Axioms 2022, 11, 369. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Aldawish, I.; Arif, M.; Abbas, M.; El-Deeb, S. Estimation of the second-order Hankel determinant of logarithmic coefficients for two subclasses of starlike functions. Symmetry 2022, 14, 2039. [Google Scholar] [CrossRef]
- Sunthrayuth, P.; Iqbal, N.; Naeem, M.; Jawarneh, Y.; Samura, S.K. The sharp upper bounds of the Hankel determinant on logarithmic coefficients for certain analytic functions Connected with Eight-Shaped Domains. J. Funct. Spaces 2022, 2022, 2229960. [Google Scholar] [CrossRef]
- Răducanu, D.; Zaprawa, P. Second Hankel determinant for close-to-convex functions. Comptes Rendus Math. 2017, 355, 1063–1071. [Google Scholar] [CrossRef]
- Wang, Z.-G.; Arif, M.; Liu, Z.H.; Zainab, S.; Fayyaz, R.; Ihsan, M.; Shutaywi, M. Sharp bounds of Hankel determinants for certain subclass of starlike functions. J. Appl. Anal. Comput. 2023, 13, 860–873. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Upper bound of second Hankel determinant for bi-Bazilevic functions. Mediterr. J. Math. 2016, 13, 4081–4090. [Google Scholar] [CrossRef]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Çaglar, M.; Deniz, E.; Srivastava, H.M. Second Hankel determinant for certain subclasses of bi-univalent functions. Turk. J. Math. 2017, 41, 694–706. [Google Scholar] [CrossRef]
- Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-subordinate functions. Mediterr. J. Math. 2017, 14, 233. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Shaba, T.G.; Catas, A. Second Hankel determinant for the subclass of bi-univalent functions using q-Chebyshev polynomial and Hohlov operator. Fractals Fract. 2022, 6, 186. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Gong, J.; Shaba, T.G. Coefficients inequalities for the bi-nnivalent functions related to q-Babalola convolution operator. Fractal Fract. 2023, 7, 155. [Google Scholar] [CrossRef]
- Al-Shbeil, N.A.I.; Catas, A.; Srivastava, H.M. Coefficient estimates of new families of analytic functions associated with q-Hermite polynomials. Axioms 2023, 14, 52. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Gong, J.; Khan, S.; Khan, N.; Khan, A.; Khan, M.F.; Goswami, A. Hankel and symmetric Toeplitz determinants for a new subclass of q-starlike functions. Fractals Fract. 2022, 6, 658. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subfamily of Schlicht mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1981, 35, 125–143. [Google Scholar]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales Serie A Matemáticas 2021, 115, 49. [Google Scholar] [CrossRef]
- Carlson, F. Sur les Coefficients D’une Fonction Bornée Dans Le Cercle Unité; Almqvist Wiksell: Stockholm, Sweden, 1940. [Google Scholar]
- Zaprawa, P. On coefficient problems for functions starlike with respect to symmetric points. Boletín de la Sociedad Matemática Mexicana 2022, 28, 17. [Google Scholar] [CrossRef]
- Shi, L.; Arif, M.; Iqbal, J.; Ullah, K.; Ghufran, S.M. Sharp bounds of Hankel determinant on logarithmic coefficients for functions starlike with exponential function. Fractal Fract. 2022, 6, 645. [Google Scholar] [CrossRef]
- Analouei Adegani, E.; Bulboacă, T.; Hameed Mohammed, N.; Zaprawa, P. Solution of logarithmic coefficients conjectures for some classes of convex functions. Math. Slovaca 2023, 73, 79–88. [Google Scholar] [CrossRef]
- Krzyz, J.G.; Libera, R.J.; Zlotkiewicz, E. Coefficients of inverse of regular starlike functions. Ann. Univ. Mariae. Curie-Skłodowska 1979, 33, 103–109. [Google Scholar]
- Ali, R.M. Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 2003, 26, 63–71. [Google Scholar]
- Shi, L.; Arif, M.; Abbas, M.; Ihsan, M. Sharp bounds of Hankel determinant for the inverse functions on a subclass of bounded turning functions. Mediterr. J. Math. 2023, 20, 156. [Google Scholar] [CrossRef]
- Shi, L.; Srivastava, H.M.; Rafiq, A.; Arif, M.; Ihsan, M. Results on Hankel determinants for the inverse of certain analytic functions subordinated to the exponential function. Mathematics 2022, 10, 3429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, K.; Al-Shbeil, I.; Faisal, M.I.; Arif, M.; Alsaud, H. Results on Second-Order Hankel Determinants for Convex Functions with Symmetric Points. Symmetry 2023, 15, 939. https://doi.org/10.3390/sym15040939
Ullah K, Al-Shbeil I, Faisal MI, Arif M, Alsaud H. Results on Second-Order Hankel Determinants for Convex Functions with Symmetric Points. Symmetry. 2023; 15(4):939. https://doi.org/10.3390/sym15040939
Chicago/Turabian StyleUllah, Khalil, Isra Al-Shbeil, Muhammad Imran Faisal, Muhammad Arif, and Huda Alsaud. 2023. "Results on Second-Order Hankel Determinants for Convex Functions with Symmetric Points" Symmetry 15, no. 4: 939. https://doi.org/10.3390/sym15040939
APA StyleUllah, K., Al-Shbeil, I., Faisal, M. I., Arif, M., & Alsaud, H. (2023). Results on Second-Order Hankel Determinants for Convex Functions with Symmetric Points. Symmetry, 15(4), 939. https://doi.org/10.3390/sym15040939