Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification
Abstract
:1. Introduction
2. Related Works
2.1. Graph Neural Network
2.2. Graph Convolutional Network
3. Proposed Algorithm
3.1. Low-Order Content Coefficient Generation
3.2. High-Order Content Coefficient Generation
3.3. Adaptive Attention Mechanism
3.4. Feature Updating
4. Experiments
4.1. Datasets
4.2. Comparison Algorithms
4.3. Parameter Settings
4.4. Evaluation
4.5. Result Analysis
4.6. Ablation Analysis
Analysis of the Adaptive Mechanism
4.7. Example Display
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rani, P.; Tayal, D.K.; Bhatia, M.P.S. Sociocentric SNA on fuzzy graph social network model. Soft Comput. 2022, 1–16. [Google Scholar] [CrossRef]
- Tao, Y.; Li, Y.; Zhang, S.; Hou, Z.; Wu, Z. Revisiting graph based social recommendation: A distillation enhanced social graph network. In Proceedings of the ACM Web Conference 2022, New York, NY, USA, 25–29 April 2022. [Google Scholar]
- Gürbüz, M.B.; Rekik, I. MGN-Net: A multi-view graph normalizer for integrating heterogeneous biological network populations. Med. Image Anal. 2021, 71, 102–119. [Google Scholar]
- Koutrouli, M.; Karatzas, E.; Paez, E.D.; Pavlopoulos, G.A. A guide to conquer the biological network era using graph theory. Front. Bioeng. Biotechnol. 2020, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Zhao, J.; Li, D.; Zhao, X.; Pan, S. Heterogeneous deep graph convolutional network with citation relational BERT for COVID-19 inline citation recommendation. Expert. Syst. Appl. 2023, 213, 118841. [Google Scholar] [CrossRef]
- Hung, B.T. Link prediction in paper citation network based on deep graph convolutional neural network. Comput. Netw. Big Data IoT 2022, 897–907. [Google Scholar]
- Chen, J.; Xu, H.; Wang, J.; Xuan, Q.; Zhang, X. Adversarial detection on graph structured data. In Proceedings of the 2020 Workshop on Privacy-Preserving Machine Learning in Practice (PPMLP), New York, NY, USA, 26–30 November 2020. [Google Scholar]
- Nguyen, D.H.; Tsuda, K. On a linear fused Gromov-Wasserstein distance for graph structured data. Pattern Recognit. 2023, 138, 109351. [Google Scholar] [CrossRef]
- Yang, H.; Liu, Z. Image recognition technology of crop diseases based on neural network model fusion. J. Electron. Imaging 2023, 32, 112–122. [Google Scholar] [CrossRef]
- Jiang, B.; He, W.; Wu, X.; Xiang, J.; Hong, L.; Sheng, W. Semi-supervised feature selection with adaptive graph learning. Acta Electonica Sin. 2022, 50, 1643–1652. [Google Scholar] [CrossRef]
- Gori, M.; Monfardini, G.; Scarselli, F. A new model for learning in graph domains. In Proceedings of the 2005 IEEE International Joint Conference on Neural Networks (IJCNN), Montreal, QC, Canada, 31 July–4 August 2005. [Google Scholar]
- Zhou, C.; Chen, H.; Zhang, J.; Li, Q.; Hu, D.; Sheng, V.S. Multi-label graph node classification with label attentive neighborhood convolution. Expert Syst. Appl. 2021, 180, 115–123. [Google Scholar] [CrossRef]
- Huang, Z.; Tang, Y.; Chen, Y. A graph neural network-based node classification model on class-imbalanced graph data. Knowl.-Based Syst. 2022, 244, 108–121. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, X.; Wang, E.; Liu, W.; Yang, Y.; Yang, F. Dynamic traffic correlations based spatio-temporal graph convolutional network for urban traffic prediction. Inform. Sci. 2023, 621, 580–595. [Google Scholar] [CrossRef]
- Ma, D.; Wang, Y.; Ma, J.; Jin, Q. SGNR: A social graph neural network based interactive recommendation scheme for e-commerce. Tsinghua Sci. Technol. 2023, 28, 786–798. [Google Scholar] [CrossRef]
- Liu, X.; Hong, Z.; Liu, J.; Lin, J.; Lin, Y.; Paton, A.R.; Zou, Q.; Zeng, X. Computational methods for identifying the critical nodes in biological networks. Brief Bioinform. 2020, 21, 486–497. [Google Scholar] [CrossRef]
- Lachaud, G.; Conde, C.P.; Trocan, M. Graph neural networks-based multilabel classification of citation network. In Proceedings of the Intelligent Information and Database Systems: 14th Asian Conference (ACIIDS), Ho Chi Minh City, Vietnam, 28–30 November 2022. [Google Scholar]
- Zhang, C.; Xue, S.; Li, J.; Wu, J.; Du, B.; Liu, D.; Chang, J. Multi-aspect enhanced graph neural networks for recommendation. Neural Netw. 2023, 157, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Shlomi, J.; Battaglia, P.; Vlimant, J.R. Graph neural networks in particle physics. Mach. Learn. Sci. Technol. 2020, 2, 21–31. [Google Scholar] [CrossRef]
- Bi, W.; Xu, B.; Sun, X.; Wang, Z.; Shen, H.; Cheng, X. Company-as-tribe: Company financial risk assessment on tribe-style graph with hierarchical graph neural networks. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), Washington, DC, USA, 14–18 August 2022. [Google Scholar]
- Huang, X.; Zhu, X.; Xu, X.; Zhang, Q.; Liang, A. Parallel Learning of Dynamics in Complex Systems. Systems 2022, 10, 259. [Google Scholar] [CrossRef]
- Zhu, J.; Rossi, R.A.; Rao, A.; Mai, T.; Lipka, N.; Ahmed, N.K.; Koutra, D. Graph neural networks with heterophily. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 19–21 May 2021. [Google Scholar]
- Chien, E.; Peng, J.; Li, P.; Milenkovic, O. Adaptive universal generalized pagerank graph neural network. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Vienna, Austria, 4–8 May 2021. [Google Scholar]
- Ma, Q.; Fan, Z.; Wang, C.; Tan, H. Graph Mixed Random Network Based on PageRank. Symmetry 2022, 14, 1678. [Google Scholar] [CrossRef]
- Kipf, T.N.; Welling, M. Semi-supervised classi-fication with graph convolutional networks. In Proceedings of the 5th International Conference on Learning Representations (ICLR), Toulon, France, 24–26 April 2017. [Google Scholar]
- Yan, Y.; Hashemi, M.; Swersky, K.; Yang, Y.; Koutra, D. Two sides of the same coin: Heterophily and oversmoothing in graph convolutional neural networks. In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 28 November–1 December 2022. [Google Scholar]
- Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, M.; Koutra, D. Beyond homophily in graph neural networks: Current limitations and effective designs. In Proceedings of the Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS), Online Event, 6–12 December 2020. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. In Proceedings of the 6th International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Yao, L.; Mao, C.; Luo, Y. Graph convolutional networks for text classification. In Proceedings of the AAAI conference on artificial intelligence (AAAI), Honolulu, HI, USA, 27 January –1 February 2019. [Google Scholar]
- Jun, E.; Na, K.S.; Kang, W.; Lee, J.; Suk, H.I.; Ham, B.J. Identifying resting-state effective connectivity abnormalities in drug-naïve major depressive disorder diagnosis via graph convolutional networks. Hum. Brain Mapp. 2020, 41, 4997–5014. [Google Scholar] [CrossRef]
- Jiang, W.; Luo, J. Graph neural network for traffic forecasting: A survey. Expert Syst. Appl. 2022, 207, 117921. [Google Scholar] [CrossRef]
- An, W.; Tian, F.; Chen, P.; Zheng, Q. Aspect-based sentiment analysis with heterogeneous graph neural network. IEEE Trans. Comput. Soc. Syst. 2022, 10, 403–412. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Xie, F.; Wu, S.; Li, D. Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network. Eng. Appl. Artif. Intell. 2023, 121, 760–768. [Google Scholar] [CrossRef]
- Deshpande, A.; Melnikov, A. Capturing Symmetries of Quantum Optimization Algorithms Using Graph Neural Networks. Symmetry 2022, 14, 2593. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recogn. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. In Proceedings of the 2nd International Conference on Learning Representations (ICLR), Banff, AB, Canada, 14–16 April 2014. [Google Scholar]
- Veličković, P.; Fedus, W.; Hamilton, W.L.; Lio, P.; Bengio, Y.; Hjelm, R.D. Deep graph infomax. In Proceedings of the 7th International Conference on Learning Representations (ICLR), New Orleans, LA, USA, 6–9 May 2019. [Google Scholar]
- Zhao, L.; Song, Y.; Zhang, C.; Liu, Y.; Wang, P.; Lin, T.; Deng, M.; Li, H. T-gcn: A temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 2019, 21, 3848–3858. [Google Scholar] [CrossRef]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st Neural information processing systems (NeurIPS), Long Beach, CA, USA, 4–9 December 2017. [Google Scholar]
- Xu, J.; Chen, Y.; Qin, Y.; Huang, R.; Zheng, Q. A Feature Combination-Based Graph Convolutional Neural Network Model for Relation Extraction. Symmetry 2021, 13, 1458. [Google Scholar] [CrossRef]
- Pei, H.; Wei, B.; Chang, K.C.C.; Lei, Y.; Yang, B. Geom-gcn:Geometric graph convolutional networks. In Proceedings of the 8nd International Conference on Learning Representations (ICLR), Addis Ababa, Ethiopia, 26–30 April 2020. [Google Scholar]
- Yang, F.; Zhang, H.; Tao, S. Hybrid deep graph convolutional networks. Int. J. Mach. Learn. Cybern. 2022, 13, 2239–2255. [Google Scholar] [CrossRef]
- Bo, D.; Wang, X.; Shi, C.; Shen, H. Beyond low-frequency information in graph convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 19–21 May 2021. [Google Scholar]
- Getoor, L. Link-based classification. Adva. Meth. Knowl. Disc. Compl. Data 2015, 189–207. [Google Scholar]
- Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.; Eliassi, T.R. Collective classification in network data. AI Mag. 2014, 29, 93–107. [Google Scholar] [CrossRef]
- Perozzi, B.; AI-Rfou, R.; Skiena, S. DeepWalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014. [Google Scholar]
- Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the Machine Learning Research, Long Beach, CA, USA, 9–15 June 2019. [Google Scholar]
- Gong, L.; Cheng, Q. Exploiting edge features for graph neural networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- He, T.; Ong, Y.S.; Bai, L. Learning conjoint attentions for graph neural nets. In Proceedings of the Thirty-fifth Conference on Neural Information Processing Systems (NeurIPS), Online Event, 6–14 December 2021. [Google Scholar]
- Zhao, J.; Dong, Y.; Tang, J.; Ding, M.; Wang, K. Generalizing graph convolutional networks via heat kernel. In Proceedings of the 9th International Conference on Learning Representations (ICLR), Virtual Event, Austria, 3–7 May 2021. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
Cora | 2708 | 5429 | 1433 | 7 | 140 | 500 | 1000 |
Cite | 3327 | 4732 | 3703 | 6 | 120 | 500 | 1000 |
PubMed | 3356 | 4278 | 500 | 3 | 60 | 500 | 1000 |
Micro-F1 | |||
Deepwalk | 60.6 ± 0.8% | 40.9 ± 0.8% | 53.2 ± 0.5% |
DGI | 75.3 ± 0.4% | 71.7 ± 0.4% | 71.1 ± 0.2% |
SGC | 80.0 ± 0.1% | 69.7 ± 0.1% | 73.9 ± 0.1% |
GCN | 82.1 ± 0.6% | 71.8 ± 0.5% | 74.2 ± 0.7% |
EGNN | 81.3 ± 0.4% | 69.7 ± 0.3% | 75.7 ± 0.3% |
CAT | 83.5 ± 0.5% | 72.0 ± 0.3% | 75.5 ± 0.7% |
HKGCN | 82.8 ± 0.1% | 66.2 ± 0.1% | 74.3 ± 0.1% |
GAT | 83.8 ± 0.2% | 71.5 ± 0.2% | 74.8 ± 0.1% |
Our-I | 83.2 ± 0.2% | 70.6 ± 0.2% | 74.2 ± 0.2% |
Our | 85.1 ± 0.2% | 72.6 ± 0.2% | 76.8 ± 0.2% |
Macro-F1 | |||
Deepwalk | 58.0 ± 0.6% | 36.3 ± 0.9% | 46.9 ± 0.6% |
DGI | 69.8 ± 0.7% | 61.6 ± 0.5% | 67.7 ± 0.3% |
SGC | 78.1 ± 0.1% | 61.9 ± 0.1% | 71.3 ± 0.1% |
GCN | 79.5 ± 0.7% | 63.2 ± 0.4% | 71.6 ± 0.8% |
EGNN | 78.3 ± 0.4% | 61.2 ± 0.3% | 74.0 ± 0.3% |
CAT | 82.3 ± 0.4% | 65.0 ± 0.4% | 74.1 ± 0.8% |
HKGCN | 80.2 ± 0.1% | 60.2 ± 0.1% | 73.1 ± 0.1% |
GAT | 82.4 ± 0.2% | 64.4 ± 0.2% | 73.6 ± 0.1% |
Our-I | 80.9 ± 0.2% | 64.9 ± 0.2% | 73.2 ± 0.2% |
Our | 83.6 ± 0.2% | 65.9 ± 0.2% | 75.9 ± 0.2% |
Weighted-F1 | |||
Deepwalk | 60.9 ± 0.7% | 39.3 ± 0.8% | 51.3 ± 0.5% |
DGI | 74.2 ± 0.5% | 68.8 ± 0.5% | 69.7 ± 0.2% |
SGC | 80.2 ± 0.1% | 67.9 ± 0.1% | 73.3 ± 0.1% |
GCN | 82.1 ± 0.6% | 69.6±0.6% | 73.4 ± 0.8% |
EGNN | 81.4 ± 0.4% | 67.4 ± 0.3% | 75.2 ± 0.2% |
CAT | 83.4 ± 0.4% | 70.6 ± 0.3% | 75.0 ± 0.7% |
HKGCN | 83.0 ± 0.1% | 65.1 ± 0.1% | 74.0 ± 0.1% |
GAT | 83.8 ± 0.1% | 70.0 ± 0.2% | 74.5 ± 0.1% |
Our-I | 83.2 ± 0.2% | 69.5 ± 0.2% | 74.0 ± 0.2% |
Our | 85.1 ± 0.2% | 71.2 ± 0.2% | 76.6 ± 0.2% |
Micro-F1 | |||
Our-low | 54.1% | 63.1% | 59.8% |
Our-high | 59.3% | 66.6% | 58.7% |
Our | 65.1% | 67.7% | 63.5% |
Macro-F1 | |||
Our-low | 46.8% | 52.4% | 49.5% |
Our-high | 49.5% | 56.0% | 44.0% |
Our | 55.7% | 57.4% | 48.5% |
Weighted-F1 | |||
Our-low | 52.9% | 59.2% | 55.1% |
Our-high | 56.6% | 63.1% | 51.6% |
Our | 63.2% | 64.5% | 56.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xie, X.-Z.; Weng, W.; He, Y.-F. Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification. Symmetry 2023, 15, 1036. https://doi.org/10.3390/sym15051036
Chen Y, Xie X-Z, Weng W, He Y-F. Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification. Symmetry. 2023; 15(5):1036. https://doi.org/10.3390/sym15051036
Chicago/Turabian StyleChen, Yong, Xiao-Zhu Xie, Wei Weng, and Yi-Fan He. 2023. "Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification" Symmetry 15, no. 5: 1036. https://doi.org/10.3390/sym15051036
APA StyleChen, Y., Xie, X.-Z., Weng, W., & He, Y.-F. (2023). Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification. Symmetry, 15(5), 1036. https://doi.org/10.3390/sym15051036