Automatic Brain Tumor Detection and Volume Estimation in Multimodal MRI Scans via a Symmetry Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Histogram Analysis for Skull Stripping
2.2. Symmetry Analysis for Tumor Detection
2.3. Whole Tumor Segmentation
2.4. Active Core Segmentation and Volume Estimation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Villanueva-Meyer, J.E.; Mabray, M.C.; Cha, S. Current clinical brain tumor imaging. Neurosurgery 2017, 81, 397–415. [Google Scholar] [CrossRef] [Green Version]
- Nabizadeh, N.; Kubat, M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput. Electr. Eng. 2015, 45, 286–301. [Google Scholar] [CrossRef]
- Yang, D. Standardized MRI assessment of high-grade glioma response: A review of the essential elements and pitfalls of the RANO criteria. Neuro-Oncol. Pract. 2016, 3, 59–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leao, D.J.; Craig, P.G.; Godoy, L.F.; Leite, C.C.; Policeni, B. Response assessment in neuro-oncology criteria for gliomas: Practical approach using conventional and advanced techniques. Am. J. Neuroradiol. 2020, 41, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Dou, W.; Ruan, S.; Chen, Y.; Bloyet, D.; Constans, J.M. A framework of fuzzy information fusion for the segmentation. Image Vis. Comput. 2007, 25, 164–171. [Google Scholar] [CrossRef]
- Verma, R.; Zacharaki, E.; Ou, Y.; Davatzikos, C. Multiparametric Tissue Characterization of Brain Neoplasms and Their Recurrence Using Pattern Classification of MR Images. Acad. Radiol. 2008, 15, 966–977. [Google Scholar] [CrossRef] [Green Version]
- Joe, B.N.; Fukui, M.B.; Meltzer, C.C.; Huang, Q.S.; Day, R.S.; Greer, P.J.; Bozik, M.E. Brain tumor volume measurement: Comparison of manual and semiautomated methods. Radiology 1999, 212, 811–816. [Google Scholar] [CrossRef]
- Dempsey, M.F.; Condon, B.R.; Hadley, D.M. Measurement of tumor “size” in recurrent malignant glioma: 1D, 2D, or 3D? Am. J. Neuroradiol. 2005, 26, 770–776. [Google Scholar]
- Meier, R.; Knecht, U.; Loosli, T.; Bauer, S.; Slotboom, J.; Wiest, R.; Reyes, M. Clinical evaluation of a fully-automatic segmentation method for longitudinal brain tumor volumetry. Sci. Rep. 2016, 6, 23376. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, Z.; Jamzad, M. Fully automated glioma tumour segmentation using anatomical symmetry plane detection in multimodal brain MRI. IET Comput. Vis. 2021, 15, 463–473. [Google Scholar] [CrossRef]
- Harati, V.; Khayati, R.; Farzan, A. Fully automated tumor segmentation based on improved fuzzy connectedness algorithm in brain MR images. Comput. Biol. Med. 2011, 41, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, P.; Kropatsch, W.G.; Bartušek, K. Automatic brain tumor detection in t2-weighted magnetic resonance images. Meas. Sci. Rev. 2013, 13, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Latif, G.; Ben Brahim, G.; Iskandar, D.N.F.A.; Bashar, A.; Alghazo, J. Glioma Tumors’ classification using deep-neural-network-based features with SVM classifier. Diagnostics 2022, 12, 1018. [Google Scholar] [CrossRef] [PubMed]
- Ogretmenoglu, C.; Erogul, O.; Telatar, Z.; Guler, E.R.; Yildirim, F. Brain tumor detection and volume estimation via MR imaging. J. Biotechnol. 2015, 208, S15. [Google Scholar] [CrossRef]
- Ogretmenoglu, C.; Telatar, Z.; Erogul, O. MR Image Segmentation and Symmetry Analysis for Detection of Brain Tumor. J. Biotechnol. 2016, 231, 9. [Google Scholar] [CrossRef]
- Fiçici, C.Ö.; Eroğul, O.; Telatar, Z. Fully automated brain tumor segmentation and volume estimation based on symmetry analysis in MR images. In CMBEBIH 2017: Proceedings of the International Conference on Medical and Biological Engineering; Springer: Singapore, 2017; pp. 53–60. [Google Scholar] [CrossRef]
- Clark, M.C.; Hall, L.O.; Goldgof, D.B.; Velthuizen, R.; Murtagh, F.R.; Silbiger, M.S. Automatic Tumor Segmentation Using knowledge-based techniques. IEEE Trans. Med. Imaging 1998, 17, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Nie, J.; Xue, Z.; Liu, T.; Young, G.S.; Setayesh, K.; Guo, L.; Wong, S.T. Automated Brain Tumor Segmentation Using Spatial Accuracy-Weighted Hidden Markov Random Field. Comput. Med. Imaging Graph. 2009, 33, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Kaus, M.R.; Warfield, S.K.; Nabavi, A.; Black, P.M.; Jolesz, F.A.; Kikinis, R. Automated Segmentation of MR Images of Brain Tumors. Radiology 2001, 218, 586–591. [Google Scholar] [CrossRef] [Green Version]
- Prastawa, M.; Bullitt, E.; Ho, S.; Gerig, G. A brain tumor segmentation framework based on outlier detection. Med. Image Anal. 2004, 8, 275–283. [Google Scholar] [CrossRef]
- Wang, T.; Cheng, I.; Basu, A. Fluid vector flow and applications in brain tumor segmentation. IEEE Trans. Biomed. Eng. 2009, 56, 781–789. [Google Scholar] [CrossRef]
- Khotanlou, H.; Colliot, O.; Atif, J.; Bloch, I. 3D brain tumor segmentation in MRI using fuzzy classification, symmetry analysis and spatially constrained deformable models. Fuzzy Sets Syst. 2009, 160, 1457–1473. [Google Scholar] [CrossRef] [Green Version]
- Kermi, A.; Andjouh, K.; Zidane, F. Fully automated brain tumour segmentation system in 3D-MRI using symmetry analysis of brain and level sets. IET Image Process. 2018, 12, 1964–1971. [Google Scholar] [CrossRef]
- Nanda, A.; Barik, R.C.; Bakshi, S. SSO-RBNN driven brain tumor classification with Saliency-K-means segmentation technique. Biomed. Signal Process. Control 2023, 81, 104356. [Google Scholar] [CrossRef]
- Khosravanian, A.; Rahmanimanesh, M.; Keshavarzi, P.; Mozaffari, S.; Kazemi, K. Level set method for automated 3D brain tumor segmentation using symmetry analysis and kernel induced fuzzy clustering. Multimed. Tools Appl. 2022, 81, 21719–21740. [Google Scholar] [CrossRef]
- Wu, X.; Bi, L.; Fulham, M.; Feng, D.D.; Zhou, L.; Kim, J. Unsupervised brain tumor segmentation using a symmetric-driven adversarial network. Neurocomputing 2021, 455, 242–254. [Google Scholar] [CrossRef]
- Bertamini, M.; Makin, A.D. Brain activity in response to visual symmetry. Symmetry 2014, 6, 975–996. [Google Scholar] [CrossRef] [Green Version]
- Corballis, M.C. Bilaterally symmetrical: To be or not to be? Symmetry 2020, 12, 326. [Google Scholar] [CrossRef] [Green Version]
- Khalil, H.A.; Darwish, S.; Ibrahim, Y.M.; Hassan, O.F. 3D-MRI brain tumor detection model using modified version of level set segmentation based on dragonfly algorithm. Symmetry 2020, 12, 1256. [Google Scholar] [CrossRef]
- Chen, H.; Qin, Z.; Ding, Y.; Tian, L.; Qin, Z. Brain tumor segmentation with deep convolutional symmetric neural network. Neurocomputing 2020, 392, 305–313. [Google Scholar] [CrossRef]
- Athisayamani, S.; Antonyswamy, R.S.; Sarveshwaran, V.; Almeshari, M.; Alzamil, Y.; Ravi, V. Feature Extraction Using a Residual Deep Convolutional Neural Network (ResNet-152) and Optimized Feature Dimension Reduction for MRI Brain Tumor Classification. Diagnostics 2023, 13, 668. [Google Scholar] [CrossRef]
- Pedada, K.R.; Rao, B.; Patro, K.K.; Allam, J.P.; Jamjoom, M.M.; Samee, N.A. A novel approach for brain tumour detection using deep learning based technique. Biomed. Signal Process. Control 2023, 82, 104549. [Google Scholar] [CrossRef]
- Alshammari, S.; Al-Sawalha, M.M.; Shah, R. Approximate Analytical Methods for a Fractional-Order Nonlinear System of Jaulent–Miodek Equation with Energy-Dependent Schrödinger Potential. Fractal Fract. 2023, 7, 140. [Google Scholar] [CrossRef]
- Shah, N.A.; Hamed, Y.S.; Abualnaja, K.M.; Chung, J.D.; Shah, R.; Khan, A. A Comparative Analysis of Fractional-Order Kaup–Kupershmidt Equation within Different Operators. Symmetry 2022, 14, 986. [Google Scholar] [CrossRef]
- Al-Sawalha, M.M.; Ababneh, O.Y.; Shah, R.; Shah, N.A.; Nonlaopon, K. Combination of Laplace transform and residual power series techniques of special fractional-order non-linear partial differential equations. AIMS Math. 2023, 8, 5266–5280. [Google Scholar] [CrossRef]
- The Cancer Imaging Archive (TCIA). 2023. Available online: https://www.cancerimagingarchive.net/ (accessed on 21 April 2022).
- Menze, B.H.; Jakab, A.; Bauer, S.; Kalpathy-Cramer, J.; Farahani, K.; Kirby, J.; Burren, Y.; Porz, N.; Slotboom, J.; Wiest, R.; et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging 2015, 34, 1993–2024. [Google Scholar] [CrossRef] [PubMed]
- Bakas, S.; Akbari, H.; Sotiras, A.; Bilello, M.; Rozycki, M.; Kirby, J.S.; Freymann, J.B.; Farahani, K.; Davatzikos, C. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 2017, 4, 170117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakas, S.; Reyes, M.; Jakab, A.; Bauer, S.; Rempfler, M.; Crimi, A.; Shinohara, R.T.; Berger, C.; Ha, S.M.; Rozycki, M.; et al. Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge. arXiv 2018, arXiv:1811.02629. [Google Scholar] [CrossRef]
- Chuang, K.-S.; Tzeng, H.-L.; Chen, S.; Wu, J.; Chen, T.-J. Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 2006, 30, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Ho, S.; Bullitt, E.; Gerig, G. Level Set Evolution with Region Competition: Automatic 3-D segmentation of brain tumors. In Proceedings of the 16th International Conference on Pattern Recognition, Quebec City, QC, Canada, 11–15 August 2002. [Google Scholar]
- Fletcher-Heath, L.M.; Hall, L.O.; Goldgof, D.B.; Murtagh, F.R. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif. Intell. Med. 2001, 21, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Ma, K.-K.; Er, M.H.; Chong, V. Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In Proceedings of the International Workshop on Advanced Imaging Technology, Chengdu, China, 12–13 January 2004. [Google Scholar]
- Corso, J.J.; Sharon, E.; Dube, S.; El-Saden, S.; Sinha, U.; Yuille, A. Efficient Multilevel Brain Tumor Segmentation with Integrated Bayesian Model Classification. Trans. Med. Imaging 2008, 27, 629–640. [Google Scholar] [CrossRef] [Green Version]
- Prastawa, M.; Bullitt, E.; Moon, N.; Leemput, K.V.; Gerig, G. Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad. Radiol. 2004, 10, 1341–1348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, A.; Awad, N.A.; Alsubaie, N.; Ansarullah, S.I.; Alqahtani, M.S.; Abbas, M.; Usman, M.; Soufiene, B.O.; Saber, A. Advanced Deep Learning Approaches for Accurate Brain Tumor Classification in Medical Imaging. Symmetry 2023, 15, 571. [Google Scholar] [CrossRef]
- Mahmud, M.I.; Mamun, M.; Abdelgawad, A.A. Deep Analysis of Brain Tumor Detection from MR Images Using Deep Learning Networks. Algorithms 2023, 16, 176. [Google Scholar] [CrossRef]
- Battalapalli, D.; Rao, B.P.; Yogeeswari, P.; Kesavadas, C.; Rajagopalan, V. An optimal brain tumor segmentation algorithm for clinical MRI dataset with low resolution and non-contiguous slices. BMC Med. Imaging 2022, 22, 89. [Google Scholar] [CrossRef]
Patient | Number of Slices | Number of Slices Containing Tumor | TP | FN | FP | TN |
---|---|---|---|---|---|---|
1 | 49 | 18 | 17 | 1 | 0 | 31 |
2 | 54 | 10 | 8 | 2 | 0 | 44 |
3 | 54 | 16 | 16 | 0 | 0 | 38 |
4 | 55 | 9 | 9 | 0 | 0 | 46 |
5 | 53 | 22 | 20 | 1 | 0 | 32 |
6 | 51 | 11 | 11 | 0 | 0 | 40 |
7 | 55 | 9 | 9 | 0 | 0 | 46 |
8 | 58 | 14 | 14 | 0 | 0 | 44 |
9 | 50 | 16 | 16 | 0 | 0 | 34 |
Total | 479 | 125 | 120 | 4 | 0 | 355 |
Patient | Sensitivity (%) | Specificity (%) | Accuracy (%) |
---|---|---|---|
1 | 94 | 100 | 98 |
2 | 80 | 100 | 96 |
3 | 100 | 100 | 100 |
4 | 100 | 100 | 100 |
5 | 95 | 100 | 98 |
6 | 100 | 100 | 100 |
7 | 100 | 100 | 100 |
8 | 100 | 100 | 100 |
9 | 100 | 100 | 100 |
Average | 97 | 100 | 99 |
MR Slice | Area Calculated by the Algorithm (mm2) | Area Calculated by the Expert (mm2) | Jaccard Coefficient (%) | Sensitivity (%) | Dice Similarity Coefficient (%) |
---|---|---|---|---|---|
16 | 470.27 | 464.11 | 99 | 100 | 99 |
17 | 583.66 | 574.87 | 98 | 100 | 99 |
18 | 660.13 | 669.8 | 99 | 99 | 99 |
19 | 697.05 | 707.6 | 99 | 99 | 99 |
20 | 617.94 | 634.64 | 97 | 97 | 99 |
21 | 857.03 | 807.8 | 93 | 100 | 97 |
22 | 1034.6 | 1086.4 | 93 | 94 | 96 |
23 | 1271 | 1298.3 | 97 | 97 | 99 |
24 | 1566.4 | 1523.3 | 97 | 100 | 98 |
25 | 1385.3 | 1422.2 | 97 | 97 | 99 |
26 | 1560.2 | 1584.8 | 98 | 98 | 99 |
27 | 1620.9 | 1600 | 99 | 100 | 99 |
28 | 1657.8 | 1705.3 | 97 | 97 | 99 |
29 | 0 | 1476.7 | 0 | 0 | 99 |
30 | 1679.8 | 1713.2 | 98 | 98 | 99 |
31 | 1858.2 | 1799.3 | 97 | 100 | 98 |
32 | 1714.1 | 1743.1 | 98 | 98 | 99 |
33 | 1630.1 | 1578.7 | 97 | 100 | 98 |
34 | 1050 | 1025.8 | 98 | 100 | 99 |
35 | 705.84 | 701.44 | 97 | 99 | 99 |
36 | 428.07 | 430.71 | 97 | 98 | 98 |
37 | 173.16 | 175.8 | 99 | 99 | 99 |
MR Slice | Area Calculated by the Algorithm (mm2) | Area Calculated by the Expert (mm2) | Jaccard Coefficient (%) | Sensitivity (%) | Dice Similarity Coefficient (%) |
---|---|---|---|---|---|
21 | 627.61 | 614.42 | 98 | 100 | 99 |
22 | 959.87 | 958.99 | 100 | 100 | 100 |
23 | 1052.2 | 1030.2 | 98 | 100 | 99 |
24 | 714.63 | 703.2 | 98 | 100 | 99 |
25 | 846.48 | 842.08 | 99 | 100 | 100 |
26 | 719.02 | 756.46 | 95 | 95 | 97 |
27 | 936.14 | 932.62 | 100 | 100 | 100 |
28 | 738.36 | 728.69 | 99 | 100 | 99 |
29 | 890.43 | 902.73 | 99 | 99 | 99 |
30 | 731.33 | 740.12 | 99 | 99 | 99 |
31 | 515.97 | 478.18 | 93 | 100 | 96 |
32 | 174.04 | 172.28 | 99 | 100 | 99 |
33 | 43.95 | 47.47 | 93 | 93 | 96 |
34 | 105.48 | 99.33 | 94 | 100 | 97 |
Patient | Volume Estimated by the Algorithm (mm2) | Volume Estimated by the Expert (mm2) | Jaccard Coefficient (%) | Sensitivity (%) | Dice Similarity Coefficient (%) |
---|---|---|---|---|---|
1 | 65,212 | 67,442 | 82 | 86 | 88 |
2 | 12,250 | 18,838 | 67 | 68 | 72 |
3 | 51,518 | 53,257 | 87 | 92 | 93 |
4 | 19,577 | 19,011 | 94 | 98 | 97 |
5 | 122,415 | 130,393 | 93 | 94 | 99 |
6 | 27,105 | 27,488 | 92 | 94 | 96 |
7 | 22,192 | 21,832 | 96 | 98 | 98 |
8 | 47,759 | 47,502 | 97 | 99 | 99 |
9 | 54,073 | 57,345 | 93 | 94 | 96 |
Average | 89 | 91 | 93 |
Algorithm | Dataset | Number of Patients (Number of MRI Slices) | Accuracy (%) |
---|---|---|---|
Whole tumor detection | TCIA | 10 (529) | 89.7 |
BRATS | 11 (1705) | 87.6 | |
Active core detection | TCIA | 9 (479) | 99.0 |
Active core volume estimation | TCIA | 9 (479) | 93.0 (Dice similarity coefficient) |
Author | Dataset | MRI Modality | Approach | Results (%) |
---|---|---|---|---|
Ho et al. [41] | Their study database | T1 and T1C | Level set evaluation; snake | Jaccard coefficient: 89 |
Prastawa et al. [20] | Their study database | T2 | Level-set evaluation; outlier detection | Jaccard coefficient: 77 |
Fletcher et al. [42] | Their study database | T1, T2, and Proton Density (PD) | Unsupervised fuzzy clustering, knowledge-based system | Jaccard coefficient: 74 |
Zhang et al. [43] | Their study database | T2 | Support vector machine (SVM) | Jaccard coefficient: 72 |
Clarc et al. [17] | Their study database | T1, T2, and Proton Density (PD) | Knowledge-based (KB) segmentation, histogram analysis | Jaccard coefficient: 70 |
Corso et al. [44] | Their study database | T1, T1C, FLAIR, and T2 | Multilevel Bayesian segmentation | Jaccard coefficient: 69 |
Prastawa et al. [45] | Their study database | T1, T1C, and T2 | Expectation-maximization (EM) method guided by a spatial probabilistic atlas | Jaccard coefficient: 59 |
Nanda et al. [24] | Kaggle (Dataset-1), BRATS (Dataset-2) | FLAIR | Hybrid salience-K-mean segmentation | Segmentation accuracy (Dataset-1): 96 (Dataset-2): 92 |
Pedada et al. [32] | BRATS-2017 (Dataset-1) BRATS-2018 (Dataset-2) | T1, T1C, and FLAIR | U-Net model | Segmentation accuracy (Dataset-1): 93.4 (Dataset-2): 92.2 |
Athisayamani et al. [31] | Figshare (Dataset-1) BRATS 2019 (Dataset-2) MICCAI BRATS (Dataset-3) | (Information does not exist in the paper.) | Residual deep convolutional neural network (ResNet-152) and the Canny Mayfly algorithm | Segmentation accuracy (Dataset-1): 97 (Dataset-2): 98 (Dataset-3): 99 |
Khosravanian et al. [25] | BRATS 2017 | FLAIR | Fuzzy kernel level set (FKLS) for 3D brain tumor segmentation | Dice: 97.62% Jaccard: 95.41% Sensitivity: 98.79% Specificity: 99.85% |
Wu et al. [26] | BRATS 2012 BRATS 2018 | T2 | Symmetric-driven adversarial network | Dice: 64.6% Sensitivity: 80.2% Specificity: 70.1% |
Barzegar et al. [10] | BRATS 2015 BRATS 2017 BRATS 2019 | T1, T1C, FLAIR, and T2 | Symmetry plane detection followed by similarity comparison | Segmentation accuracy (Dataset-1): Dice score: 86.3 Jaccard: 80.5 (Dataset-2): Dice score: 92.7 Jaccard: 82.3 (Dataset-3): Dice score: 91.3 Jaccard: 84.1 |
Chen et al. [30] | BRATS 2015 | T1, T1c, T2, and Flair | Deep convolutional neural network which combines symmetry | Dice similarity coefficient: 85.2 |
Khalil et al. [29] | BRATS 2017 | T1 or T1c or T2 or Flair | Level set segmentation based on the dragonfly algorithm | Accuracy: 98.2 Recall: 95.13 Precision: 93.21 |
Kermi et al. [23] | BRATS 2017 | FLAIR or T2 | Symmetry analysis based on the fast bounding box, region growing, and geodesic level-set methods | Sensitivity: 81.59 (T2) 89.01 (FLAIR) Kappa: 76.82 (T2) 83.04 (FLAIR) |
Proposed Method | Cancer imaging archive | T1, T1C, and FLAIR | Histogram Analysis, Adaptive thresholding, Symmetry Analysis, FCM | Accuracy: 89.7 (whole tumor detection) Accuracy: 99 (active core detection) Sensitivity: 97 (active core detection) Jaccard coefficient: 89 (active core volume estimation) Sensitivity: 91 (active core volume estimation) Dice similarity coefficient: 93 (active core volume estimation) |
BRATS 2018 | Accuracy: 87.6 (whole tumor detection) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ficici, C.; Erogul, O.; Telatar, Z.; Kocak, O. Automatic Brain Tumor Detection and Volume Estimation in Multimodal MRI Scans via a Symmetry Analysis. Symmetry 2023, 15, 1586. https://doi.org/10.3390/sym15081586
Ficici C, Erogul O, Telatar Z, Kocak O. Automatic Brain Tumor Detection and Volume Estimation in Multimodal MRI Scans via a Symmetry Analysis. Symmetry. 2023; 15(8):1586. https://doi.org/10.3390/sym15081586
Chicago/Turabian StyleFicici, Cansel, Osman Erogul, Ziya Telatar, and Onur Kocak. 2023. "Automatic Brain Tumor Detection and Volume Estimation in Multimodal MRI Scans via a Symmetry Analysis" Symmetry 15, no. 8: 1586. https://doi.org/10.3390/sym15081586
APA StyleFicici, C., Erogul, O., Telatar, Z., & Kocak, O. (2023). Automatic Brain Tumor Detection and Volume Estimation in Multimodal MRI Scans via a Symmetry Analysis. Symmetry, 15(8), 1586. https://doi.org/10.3390/sym15081586