A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space
Abstract
:1. Introduction
2. Preliminaries
3. Main Results
- (i)
- If , then is a non-steady function of variable u, and condition (13) can be expressed as
- (ii)
- If , that is, the curve is a planar curve, then is fixed and we have:
- (a)
- In the situation of , condition (13) can be expressed as
- (b)
- If , condition (13) can be expressed as
Ruled Surface Pencil Pairs with Bertrand Pairs as Joint Curvature Lines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Do Carmo, M.P. Differential Geometry of Curves and Surfaces; Prentice Hall: Englewood Cliffs, NJ, USA, 1976. [Google Scholar]
- Spivak, M. A Comprehensive Introduction to Differential Geometry, 2nd ed.; Publish or Perish: Houston, TX, USA, 1979. [Google Scholar]
- Munchmeyer, F.C. On surface imperfections. In Mathematics of Surfaces II; Martin, R., Ed.; Oxford University Press: Oxford, UK, 1987; pp. 459–474. [Google Scholar]
- Patrikalakis, N.M.; Maekawa, T. Shape Interrogation for Computer Aided Design and Manufacturing; Springer: Berlin/Heidelberg, Germany, 2002; ISBN 978-3-540-42454-3. [Google Scholar]
- Martin, R.R. Principal patches—A new class of surface patches based on differential geometry. In Proceedings of the 4th Annual European Association for Computer Graphics Conference and Exhibition, Eurographics’83, Zagreb, Yugoslavia, 31 August–2 September 1983; Ten Hagen, P.J.W., Ed.; North-Holland: Amsterdam, The Netherlands, 1983; pp. 47–55. [Google Scholar]
- Alourdas, P.G.; Hottel, G.R.; Tuohy, S.T. A design and interrogation system for modeling with rational b-splines. In Proceedings of the Ninth International Symposium on OMAE, Houston, TX, USA, 18–23 February 1990; ASME: New York, NY, USA, 1990; Volume 1, Part B. pp. 555–565. Available online: https://trid.trb.org/View/437329 (accessed on 24 October 2023).
- Maekawa, T.; Wolter, F.-E.; Patrikalakis, N.M. Umbilics and lines of curvature for shape interrogation. Comput. Aided Geom. Des. 1996, 13, 133–161. [Google Scholar] [CrossRef]
- Che, W.J.; Paul, J.C. Lines of curvature and umbilical points for implicit surfaces. Comput. Aided Geom. Des. 2007, 24, 395–409. [Google Scholar] [CrossRef]
- Zhang, X.P.; Che, W.j.; Paul, J.C. Computing lines of curvature for implicit surfaces. Comput. Aided Geom. Des. 2009, 26, 923–940. [Google Scholar] [CrossRef]
- Kalogerakis, E.; Nowrouzezahrai, D.; Simari, P.; Singh, K. Extracting lines of curvature from noisy point clouds. Comput.-Aided Des. 2009, 41, 282–292. [Google Scholar] [CrossRef]
- Wang, G.; Tang, K.; Tai, C.H. Parametric representation of a surface pencil with common spatial geodesic. Comput-Aided Des. 2004, 36, 447–459. [Google Scholar] [CrossRef]
- Kasap, E.; Akyldz, F.T.; Orbay, K. A generalization of surfaces family with common spatial geodesic. Appl. Math. Comput. 2008, 201, 781–789. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, R.H.; Zhu, C.G. Parametric representation of a surface pencil with a common line of curvature. Comput.-Aided Des. 2011, 43, 1110–1117. [Google Scholar] [CrossRef]
- Li, C.Y.; Wang, R.H.; Zhu, C.G. An approach for designing a developable surface through a given line of curvature. Comput.-Aided Des. 2013, 45, 621–627. [Google Scholar] [CrossRef]
- Bayram, E.; Guler, F.; Kasap, E. Parametric representation of a surface pencil with a common asymptotic curve. Comput.-Aided Des. 2012, 44, 637–643. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.J. Designing developable surface pencil through given curve as its common asymptotic curve. J. Zhejiang Univ. 2013, 47, 1246–1252. [Google Scholar]
- Atalay, G.S.; Kasap, E. Surfaces family with common Smarandache geodesic curve. J. Sci. Arts 2017, 4, 651–664. [Google Scholar]
- Atalay, G.S.; Kasap, E. Surfaces family with common Smarandache geodesic curve according to Bishop frame in Euclidean space. Math. Sci. Appl. 2016, 4, 164–174. [Google Scholar] [CrossRef]
- Bayram, E.; Bilici, M. Surface family with a common involute asymptotic curve. Int. J. Geom. Methods Mod. Phys. 2016, 13, 447–459. [Google Scholar] [CrossRef]
- Guler, F.; Bayram, E.; Kasap, E. Offset surface pencil with a common asymptotic curve. Int. J. Geom. Methods Mod. Phys. 2018, 15, 1850195. [Google Scholar] [CrossRef]
- Atalay, G.S. Surfaces family with a common Mannheim asymptotic curve. J. Appl. Math. Comput. 2018, 2, 143–154. [Google Scholar]
- Atalay, G.S. Surfaces family with a common Mannheim geodesic curve. J. Appl. Math. Comput. 2018, 2, 155–165. [Google Scholar]
- Abdel-Baky, R.A.; Alluhaibi, N. Surfaces family with a common geodesic curve in Euclidean 3-Space . Int. J. Math. Anal. 2019, 13, 433–447. [Google Scholar] [CrossRef]
- Senyurt, S.; Ayvac, K.H.; Canli, D. Family of Surfaces with a common Bertrand D- Curve as isogeodesic, isoasymptotic and line of curvature. Appl. Appl. Math. 2021, 16, 1186–1201. [Google Scholar]
- Papaioannou, S.G.; Kiritsis, D. An application of Bertrand curves and surface to CAD/CAM. Comput.-Aided Des. 1985, 17, 348–352. [Google Scholar] [CrossRef]
- Ravani, B.; Ku, T.S. Bertrand offsets of ruled and developable surfaces. Comput.-Aided Des. 1991, 23, 145–152. [Google Scholar] [CrossRef]
- Sprott, K.S.; Ravani, B. Cylindrical milling of ruled surfaces. Int. J. Adv. Manuf. Technol. 2008, 38, 649–656. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvac, H.; Ersoy, S. Simultaneous characterizations of partner ruled surfaces using Flc frame. AIMS Math. 2023, 7, 20213–20229. [Google Scholar] [CrossRef]
- Mofarreh, F.; Abdel-Baky, R.A. Surface pencil pair interpolating Bertrand pair as common asymptotic curves in Euclidean 3-space. Mathematics 2023, 11, 3495. [Google Scholar] [CrossRef]
- Almoneef, A.A.; Abdel-Baky, R.A. Singularity properties of spacelike circular surfaces. Symmetry 2023, 15, 842. [Google Scholar] [CrossRef]
- Li, Y.; Alkhaldi, A.H.; Ali, A.; Abdel-Baky, R.A.; Saad, M.K. Investigation of ruled surfaces and their singularities according to Blaschke frame in Euclidean 3-space. AIMS Math. 2023, 8, 13875–13888. [Google Scholar] [CrossRef]
- Nazra, S.; Abdel-Baky, R.A. Singularities of non-lightlike developable surfaces in Minkowski 3-space. Mediterr. J. Math. 2023, 20, 45. [Google Scholar] [CrossRef]
- Li, Y.; Bhattacharyya, S.; Azami, S.; Saha, A.; Hui, S.K. Harnack Estimation for Nonlinear, Weighted, Heat-Type Equation along Geometric Flow and Applications. Mathematics 2023, 11, 2516. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ersoy, S. On simultaneous characterizations of partner-ruled surfaces in Minkowski 3-space. AIMS Math. 2023, 8, 22256–22273. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. A Hypersurfaces of Revolution Family in the Five-Dimensional Pseudo-Euclidean Space . Mathematics 2023, 11, 3427. [Google Scholar] [CrossRef]
- Li, Y.; Gupta, M.K.; Sharma, S.; Chaubey, S.K. On Ricci Curvature of a Homogeneous Generalized Matsumoto Finsler Space. Mathematics 2023, 11, 3365. [Google Scholar] [CrossRef]
- Li, Y.; Mofarreh, F.; Abdel-Baky, R.A. Kinematic-geometry of a line trajectory and the invariants of the axodes. Demonstr. Math. 2023, 56, 20220252. [Google Scholar] [CrossRef]
- Li, Y.; Kumara, H.A.; Siddesha, M.S.; Naik, D.M. Characterization of Ricci Almost Soliton on Lorentzian Manifolds. Symmetry 2023, 15, 1175. [Google Scholar] [CrossRef]
- Li, Y.; Güler, E. Hypersurfaces of revolution family supplying in pseudo-Euclidean space. AIMS Math. 2023, 8, 24957–24970. [Google Scholar] [CrossRef]
- Li, Y.; Mak, M. Framed Natural Mates of Framed Curves in Euclidean 3-Space. Mathematics 2023, 11, 3571. [Google Scholar] [CrossRef]
- Li, Y.; Patra, D.; Alluhaibi, N.; Mofarreh, F.; Ali, A. Geometric classifications of k-almost Ricci solitons admitting paracontact metrices. Open Math. 2023, 21, 20220610. [Google Scholar] [CrossRef]
- Li, Y.; Eren, K.; Ayvacı, K.H.; Ersoy, S. The developable surfaces with pointwise 1-type Gauss map of Frenet type framed base curves in Euclidean 3-space. AIMS Math. 2023, 8, 2226–2239. [Google Scholar] [CrossRef]
- Li, Y.; Ganguly, D. Kenmotsu Metric as Conformal η-Ricci Soliton. Mediterr. J. Math. 2023, 20, 193. [Google Scholar] [CrossRef]
- Li, Y.; Erdoğdu, M.; Yavuz, A. Differential Geometric Approach of Betchow-Da Rios Soliton Equation. Hacet. J. Math. Stat. 2023, 52, 114–125. [Google Scholar] [CrossRef]
- Li, Y.; Gezer, A.; Karakaş, E. Some notes on the tangent bundle with a Ricci quarter-symmetric metric connection. AIMS Math. 2023, 8, 17335–17353. [Google Scholar] [CrossRef]
- Li, Y.; Abdel-Salam, A.A.; Saad, M.K. Primitivoids of curves in Minkowski plane. AIMS Math. 2023, 8, 2386–2406. [Google Scholar] [CrossRef]
- Li, J.; Yang, Z.; Li, Y.; Abdel-Baky, R.A.; Saad, M.K. On the Curvatures of Timelike Circular Surfaces in Lorentz-Minkowski Space. 2023. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4425631 (accessed on 24 October 2023).
- Li, Y.; Caliskan, A. Quaternionic Shape Operator and Rotation Matrix on Ruled Surfaces. Axioms 2023, 12, 486. [Google Scholar] [CrossRef]
- Li, Y.; Srivastava, S.K.; Mofarreh, F.; Kumar, A.; Ali, A. Ricci Soliton of CR-Warped Product Manifolds and Their Classifications. Symmetry 2023, 15, 976. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nazra, S.H.; Abdel-Baky, R.A. A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space. Symmetry 2023, 15, 1986. https://doi.org/10.3390/sym15111986
Nazra SH, Abdel-Baky RA. A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space. Symmetry. 2023; 15(11):1986. https://doi.org/10.3390/sym15111986
Chicago/Turabian StyleNazra, Sahar H., and Rashad A. Abdel-Baky. 2023. "A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space" Symmetry 15, no. 11: 1986. https://doi.org/10.3390/sym15111986
APA StyleNazra, S. H., & Abdel-Baky, R. A. (2023). A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space. Symmetry, 15(11), 1986. https://doi.org/10.3390/sym15111986