Some Simpson-like Inequalities Involving the (s,m)-Preinvexity
Abstract
:1. Introduction
2. Main Results
3. Applications
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Meftah, B. Hermite-Hadamard’s inequalities for functions whose first derivatives are (s,m)-preinvex in the second sense. J. New Theory 2016, 10, 54–65. [Google Scholar]
- Pećarixcx, J.E.; Proschan, F.; Tong, Y.L. Convex functions, partial orderings, and statistical applications. In Mathematics in Science and Engineering; Academic Press, Inc.: Boston, MA, USA, 1992; Volume 187. [Google Scholar]
- Toader, G. Some generalizations of the convexity. In Proceedings of the Colloquium on Approximation and Optimization, Cluj-Napoca, Romania, 25–27 October 1984; pp. 329–338. [Google Scholar]
- Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Eftekhari, N. Some remarks on (s,m)-convexity in the second sense. J. Math. Inequal. 2014, 8, 489–495. [Google Scholar] [CrossRef]
- Weir, T.; Mond, B. Pre-invex functions in multiple objective optimization. J. Math. Anal. Appl. 1988, 136, 29–38. [Google Scholar] [CrossRef]
- Latif, M.A.; Shoaib, M. Hermite-Hadamard type integral inequalities for differentiable m-preinvex and (α,m)-preinvex functions. J. Egypt. Math. Soc. 2015, 23, 236–241. [Google Scholar] [CrossRef]
- Li, J.-Y. On Hadamard-type inequalities for s-preinvex functions. J. Chongqing Norm. Univ. (Nat. Sci.) 2010, 27, 3. [Google Scholar]
- Du, T.; Liao, J.; Chen, L.; Awan, M.U. Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized α,m-preinvex functions. J. Inequal. Appl. 2016, 2016, 306. [Google Scholar] [CrossRef]
- Kashuri, A.; Meftah, B.; Mohammed, P.O.; Lupaş, A.A.; Abdalla, B.; Hamed, Y.S.; Abdeljawad, T. Fractional weighted Ostrowski-type inequalities and their applications. Symmetry 2021, 13, 968. [Google Scholar] [CrossRef]
- Kashuri, A.; Sarikaya, M.Z. Parameterized inequalities of different types for preinvex functions with respect to another function via generalized fractional integral operators and their applications. Ukr. Math. J. 2021, 73, 1371–1397, Reprint of Ukraïn. Mat. Zh. 2021, 73, 1181–1204. [Google Scholar] [CrossRef]
- Li, Y.; Du, T.; Yu, B. Some new integral inequalities of Hadamard-Simpson type for extended (s,m)-preinvex functions. Ital. J. Pure Appl. Math. 2016, 36, 583–600. [Google Scholar]
- Meftah, B. Fractional Hermite-Hadamard type integral inequalities for functions whose modulus of derivatives are co-ordinated log-preinvex. Punjab Univ. J. Math. 2019, 51, 21–37. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Mohsen, B.B.; Rassias, M.T.; Raigorodskii, A. General preinvex functions and variational-like inequalities, In Approximation and Computation in Science and Engineering; Springer Optimization and Its Applications; Springer: Berlin/Heidelberg, Germany, 2022; Volume 180, pp. 643–666. [Google Scholar]
- Pavić, Z.; Avcı, M.A. The most important inequalities of m-convex functions. Turk. J. Math. 2017, 41, 625–635. [Google Scholar] [CrossRef]
- Rashid, S.; Latif, M.A.; Hammouch, Z.; Chu, Y.M. Fractional integral inequalities for strongly h-preinvex functions for ak th order differentiable functions. Symmetry 2019, 11, 1448. [Google Scholar] [CrossRef]
- Safdar, F.; Attique, M. Extended weighted Simpson-like type inequalities for preinvex functions and their use in physical system. Punjab Univ. J. Math. 2022, 54, 621–643. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Ozdemir, M.E. On new inequalities of Simpson’s type for s-convex functions. Comput. Math. Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Budak, H.; Erden, S. On new inequalities of Simpson’s type for generalized convex functions. Korean J. Math. 2019, 27, 279–295. [Google Scholar]
- Wang, Y.; Wang, S.-H.; Qi, F. Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex. Facta Univ. Ser. Math. Inform. 2013, 28, 151–159. [Google Scholar]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; İşcan, İ.; Chu, Y.-M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020, 496, 26. [Google Scholar] [CrossRef]
- Ali, M.A.; Kara, H.; Tariboon, J.; Asawasamrit, S.; Budak, H.; Hezenci, F. Some new Simpson’s-formula-type inequalities for twice-differentiable convex functions via generalized fractional operators. Symmetry 2021, 13, 2249. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 9. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Mihai, M.V.; Noor, K.I.; Khan, A.G. Some new bounds for Simpson’s rule involving special functions via harmonic h-convexity. J. Nonlinear Sci. Appl. 2017, 10, 1755–1766. [Google Scholar] [CrossRef]
- Du, T.; Liao, J.-G.; Li, Y.-J. Properties and integral inequalities of Hadamard-Simpson type for the generalized (s,m)-preinvex functions. J. Nonlinear Sci. Appl. 2016, 9, 3112–3126. [Google Scholar] [CrossRef]
- Farid, G.; Tariq, B. Some integral inequalities for m-convex functions via fractional integrals. J. Inequal. Spec. Funct. 2017, 8, 170–185. [Google Scholar]
- Hamida, S.; Meftah, B. Some Simpson type inequalities for differentiable h-preinvex functions. Indian J. Math. 2020, 62, 299–319. [Google Scholar]
- Hezenci, F.; Budak, H.; Kara, H. New version of fractional Simpson type inequalities for twice differentiable functions. Adv. Differ. Equ. 2021, 460, 10. [Google Scholar] [CrossRef]
- Qaisar, S.H.a.S. Generalizations of Simpson’s type inequalities through preinvexity and prequasiinvexity. Punjab Univ. J. Math. 2014, 46, 1–9. [Google Scholar]
- Rashid, S.; Akdemir, A.O.; Jarad, F.; Noor, M.A.; Noor, K.I. Simpson’s type integral inequalities for k-fractional integrals and their applications. AIMS Math. 2019, 4, 1087–1100. [Google Scholar] [CrossRef]
- Hua, J.; Xi, B.-Y.; Qi, F. Some new inequalities of Simpson type for strongly s-convex functions. Afr. Mat. 2015, 26, 741–752. [Google Scholar] [CrossRef]
- Chiheb, T.; Boumaza, N.; Meftah, B. Some new Simpson-like type inequalities via preqausiinvexity. Transylv. J. Math. Mech. 2020, 12, 1–10. [Google Scholar]
- Rainville, E.D. ; Special Functions, Reprint of 1960, 1st ed.; Chelsea Publishing Co.: Bronx, NY, USA, 1971. [Google Scholar]
- Srivastava, H.M.; Choi, J. Zeta and q-Zeta Functions and Associated Series and Integrals; Elsevier, Inc.: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Bullen, P.S. Handbook of Means and their Inequalities.; In Mathematics and its Applications, 560; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiheb, T.; Meftah, B.; Moumen, A.; Mesmouli, M.B.; Bouye, M. Some Simpson-like Inequalities Involving the (s,m)-Preinvexity. Symmetry 2023, 15, 2178. https://doi.org/10.3390/sym15122178
Chiheb T, Meftah B, Moumen A, Mesmouli MB, Bouye M. Some Simpson-like Inequalities Involving the (s,m)-Preinvexity. Symmetry. 2023; 15(12):2178. https://doi.org/10.3390/sym15122178
Chicago/Turabian StyleChiheb, Tarek, Badreddine Meftah, Abdelkader Moumen, Mouataz Billah Mesmouli, and Mohamed Bouye. 2023. "Some Simpson-like Inequalities Involving the (s,m)-Preinvexity" Symmetry 15, no. 12: 2178. https://doi.org/10.3390/sym15122178
APA StyleChiheb, T., Meftah, B., Moumen, A., Mesmouli, M. B., & Bouye, M. (2023). Some Simpson-like Inequalities Involving the (s,m)-Preinvexity. Symmetry, 15(12), 2178. https://doi.org/10.3390/sym15122178