Quantum Physics
[Submitted on 30 Dec 2014]
Title:Reflections on the PBR Theorem: Reality Criteria & Preparation Independence
View PDFAbstract:This paper contains initial work on attempting to bring recent developments in the foundations of quantum mechanics concerning the nature of the wavefunction within the scope of more logical and structural methods. A first step involves dualising a criterion for the reality of the wavefunction proposed by Harrigan & Spekkens, which was central to the Pusey-Barrett-Rudolph theorem. The resulting criterion has several advantages, including the avoidance of certain technical difficulties relating to sets of measure zero. By considering the 'reality' not of the wavefunction but of the observable properties of any ontological physical theory a new characterisation of non-locality and contextuality is found. Secondly, a careful analysis of preparation independence, one of the key assumptions of the PBR theorem, leads to a precise analogy with the kind of locality prohibited by Bell's theorem. Motivated by this, we propose a weakening of the assumption to something analogous to no-signalling. This amounts to allowing global or non-local correlations in the joint ontic state, which nevertheless do not allow for superluminal signalling. This is, at least, consistent with the Bell and Kochen-Specker theorems. We find a counter-example to the PBR argument, which violates preparation independence, but does satisfy this physically motivated assumption. The question of whether the PBR result can be strengthened to hold under the relaxed assumption is therefore posed.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 30 Dec 2014 03:18:04 UTC (19 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.