Computer Science > Logic in Computer Science
[Submitted on 9 Jul 2019]
Title:Proving Properties of Sorting Programs: A Case Study in Horn Clause Verification
View PDFAbstract:The proof of a program property can be reduced to the proof of satisfiability of a set of constrained Horn clauses (CHCs) which can be automatically generated from the program and the property. In this paper we have conducted a case study in Horn clause verification by considering several sorting programs with the aim of exploring the effectiveness of a transformation technique which allows us to eliminate inductive data structures such as lists or trees. If this technique is successful, we derive a set of CHCs with constraints over the integers and booleans only, and the satisfiability check can often be performed in an effective way by using state-of-the-art CHC solvers, such as Eldarica or Z3. In this case study we have also illustrated the usefulness of a companion technique based on the introduction of the so-called difference predicates, whose definitions correspond to lemmata required during the verification. We have considered functional programs which implement the following kinds of sorting algorithms acting on lists of integers: (i) linearly recursive sorting algorithms, such as insertion sort and selection sort, and (ii) non-linearly recursive sorting algorithms, such as quicksort and mergesort, and we have considered the following properties: (i) the partial correctness properties, that is, the orderedness of the output lists, and the equality of the input and output lists when viewed as multisets, and (ii) some arithmetic properties, such as the equality of the sum of the elements before and after sorting.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 9 Jul 2019 06:02:42 UTC (28 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.