Mathematics > Group Theory
[Submitted on 5 Nov 2015 (v1), last revised 3 Mar 2016 (this version, v2)]
Title:Cayley automatic representations of wreath products
View PDFAbstract:We construct the representations of Cayley graphs of wreath products using finite automata, pushdown automata and nested stack automata. These representations are in accordance with the notion of Cayley automatic groups introduced by Kharlampovich, Khoussainov and Miasnikov and its extensions introduced by Elder and Taback. We obtain the upper and lower bounds for a length of an element of a wreath product in terms of the representations constructed.
Submission history
From: Dmitry Berdinsky [view email][v1] Thu, 5 Nov 2015 07:17:32 UTC (61 KB)
[v2] Thu, 3 Mar 2016 20:57:34 UTC (72 KB)
Current browse context:
math.GR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.