Computer Science > Logic in Computer Science
[Submitted on 12 Dec 2015]
Title:Mathematics of Domains
View PDFAbstract:Two groups of naturally arising questions in the mathematical theory of domains for denotational semantics are addressed. Domains are equipped with Scott topology and represent data types. Scott continuous functions represent computable functions and form the most popular continuous model of computations.
Covariant Logic of Domains: Domains are represented as sets of theories, and Scott continuous functions are represented as input-output inference engines. The questions addressed are: A. What constitutes a subdomain? Do subdomains of a given domain $A$ form a domain? B. Which retractions are finitary? C. What is the essence of generalizations of information systems based on non-reflexive logics? Are these generalizations restricted to continuous domains?
Analysis on Domains:
D. How to describe Scott topologies via generalized distance functions satisfying the requirement of Scott continuity ("abstract computability")? The answer is that the axiom $\rho (x, x) = 0$ is incompatible with Scott continuity of distance functions. The resulting \bf relaxed metrics are studied.
E. Is it possible to obtain Scott continuous relaxed metrics via measures of domain subsets representing positive and negative information about domain elements? The positive answer is obtained via the discovery of the novel class of co-continuous valuations on the systems of Scott open sets.
Some of these natural questions were studied earlier. However, in each case a novel approach is presented, and the answers are supplied with much more compelling and clear justifications, than were known before.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.