Computer Science > Computational Complexity
[Submitted on 7 Mar 2016 (v1), last revised 20 Jun 2016 (this version, v3)]
Title:On the Implicit Graph Conjecture
View PDFAbstract:The implicit graph conjecture states that every sufficiently small, hereditary graph class has a labeling scheme with a polynomial-time computable label decoder. We approach this conjecture by investigating classes of label decoders defined in terms of complexity classes such as P and EXP. For instance, GP denotes the class of graph classes that have a labeling scheme with a polynomial-time computable label decoder. Until now it was not even known whether GP is a strict subset of GR. We show that this is indeed the case and reveal a strict hierarchy akin to classical complexity. We also show that classes such as GP can be characterized in terms of graph parameters. This could mean that certain algorithmic problems are feasible on every graph class in GP. Lastly, we define a more restrictive class of label decoders using first-order logic that already contains many natural graph classes such as forests and interval graphs. We give an alternative characterization of this class in terms of directed acyclic graphs. By showing that some small, hereditary graph class cannot be expressed with such label decoders a weaker form of the implicit graph conjecture could be disproven.
Submission history
From: Maurice Chandoo [view email][v1] Mon, 7 Mar 2016 08:55:26 UTC (24 KB)
[v2] Tue, 26 Apr 2016 12:29:23 UTC (74 KB)
[v3] Mon, 20 Jun 2016 09:27:02 UTC (76 KB)
Current browse context:
cs.CC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.