Computer Science > Machine Learning
[Submitted on 1 Mar 2022 (v1), last revised 17 Sep 2022 (this version, v2)]
Title:Uncertainty categories in medical image segmentation: a study of source-related diversity
View PDFAbstract:Measuring uncertainties in the output of a deep learning method is useful in several ways, such as in assisting with interpretation of the outputs, helping build confidence with end users, and for improving the training and performance of the networks. Several different methods have been proposed to estimate uncertainties, including those from epistemic (relating to the model used) and aleatoric (relating to the data) sources using test-time dropout and augmentation, respectively. Not only are these uncertainty sources different, but they are governed by parameter settings (e.g., dropout rate or type and level of augmentation) that establish even more distinct uncertainty categories. This work investigates how different the uncertainties are from these categories, for magnitude and spatial pattern, to empirically address the question of whether they provide usefully distinct information that should be captured whenever uncertainties are used. We take the well characterised BraTS challenge dataset to demonstrate that there are substantial differences in both magnitude and spatial pattern of uncertainties from the different categories, and discuss the implications of these in various use cases.
Submission history
From: Luke Whitbread [view email][v1] Tue, 1 Mar 2022 05:25:02 UTC (1,387 KB)
[v2] Sat, 17 Sep 2022 03:27:40 UTC (2,304 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.