Electrical Engineering and Systems Science > Audio and Speech Processing
[Submitted on 4 Mar 2022]
Title:Integrating Statistical Uncertainty into Neural Network-Based Speech Enhancement
View PDFAbstract:Speech enhancement in the time-frequency domain is often performed by estimating a multiplicative mask to extract clean speech. However, most neural network-based methods perform point estimation, i.e., their output consists of a single mask. In this paper, we study the benefits of modeling uncertainty in neural network-based speech enhancement. For this, our neural network is trained to map a noisy spectrogram to the Wiener filter and its associated variance, which quantifies uncertainty, based on the maximum a posteriori (MAP) inference of spectral coefficients. By estimating the distribution instead of the point estimate, one can model the uncertainty associated with each estimate. We further propose to use the estimated Wiener filter and its uncertainty to build an approximate MAP (A-MAP) estimator of spectral magnitudes, which in turn is combined with the MAP inference of spectral coefficients to form a hybrid loss function to jointly reinforce the estimation. Experimental results on different datasets show that the proposed method can not only capture the uncertainty associated with the estimated filters, but also yield a higher enhancement performance over comparable models that do not take uncertainty into account.
Current browse context:
eess.AS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.