Mathematics > Numerical Analysis
[Submitted on 4 Mar 2022]
Title:Low-order preconditioning for the high-order finite element de Rham complex
View PDFAbstract:In this paper we present a unified framework for constructing spectrally equivalent low-order-refined discretizations for the high-order finite element de Rham complex. This theory covers diffusion problems in $H^1$, $H({\rm curl})$, and $H({\rm div})$, and is based on combining a low-order discretization posed on a refined mesh with a high-order basis for Nédélec and Raviart-Thomas elements that makes use of the concept of polynomial histopolation (polynomial fitting using prescribed mean values over certain regions). This spectral equivalence, coupled with algebraic multigrid methods constructed using the low-order discretization, results in highly scalable matrix-free preconditioners for high-order finite element problems in the full de Rham complex. Additionally, a new lowest-order (piecewise constant) preconditioner is developed for high-order interior penalty discontinuous Galerkin (DG) discretizations, for which spectral equivalence results and convergence proofs for algebraic multigrid methods are provided. In all cases, the spectral equivalence results are independent of polynomial degree and mesh size; for DG methods, they are also independent of the penalty parameter. These new solvers are flexible and easy to use; any "black-box" preconditioner for low-order problems can be used to create an effective and efficient preconditioner for the corresponding high-order problem. A number of numerical experiments are presented, based on an implmentation in the finite element library MFEM. The theoretical properties of these preconditioners are corroborated, and the flexibility and scalability of the method are demonstrated on a range of challenging three-dimensional problems.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.