Computer Science > Machine Learning
[Submitted on 8 Mar 2022 (v1), last revised 25 Mar 2022 (this version, v2)]
Title:Contrastive Conditional Neural Processes
View PDFAbstract:Conditional Neural Processes~(CNPs) bridge neural networks with probabilistic inference to approximate functions of Stochastic Processes under meta-learning settings. Given a batch of non-{\it i.i.d} function instantiations, CNPs are jointly optimized for in-instantiation observation prediction and cross-instantiation meta-representation adaptation within a generative reconstruction pipeline. There can be a challenge in tying together such two targets when the distribution of function observations scales to high-dimensional and noisy spaces. Instead, noise contrastive estimation might be able to provide more robust representations by learning distributional matching objectives to combat such inherent limitation of generative models. In light of this, we propose to equip CNPs by 1) aligning prediction with encoded ground-truth observation, and 2) decoupling meta-representation adaptation from generative reconstruction. Specifically, two auxiliary contrastive branches are set up hierarchically, namely in-instantiation temporal contrastive learning~({\tt TCL}) and cross-instantiation function contrastive learning~({\tt FCL}), to facilitate local predictive alignment and global function consistency, respectively. We empirically show that {\tt TCL} captures high-level abstraction of observations, whereas {\tt FCL} helps identify underlying functions, which in turn provides more efficient representations. Our model outperforms other CNPs variants when evaluating function distribution reconstruction and parameter identification across 1D, 2D and high-dimensional time-series.
Submission history
From: Zesheng Ye [view email][v1] Tue, 8 Mar 2022 10:08:45 UTC (5,252 KB)
[v2] Fri, 25 Mar 2022 04:28:04 UTC (6,069 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.