Computer Science > Information Retrieval
[Submitted on 8 Mar 2022 (v1), last revised 23 Jul 2022 (this version, v2)]
Title:Predictive and Contrastive: Dual-Auxiliary Learning for Recommendation
View PDFAbstract:Self-supervised learning (SSL) recently has achieved outstanding success on recommendation. By setting up an auxiliary task (either predictive or contrastive), SSL can discover supervisory signals from the raw data without human annotation, which greatly mitigates the problem of sparse user-item interactions. However, most SSL-based recommendation models rely on general-purpose auxiliary tasks, e.g., maximizing correspondence between node representations learned from the original and perturbed interaction graphs, which are explicitly irrelevant to the recommendation task. Accordingly, the rich semantics reflected by social relationships and item categories, which lie in the recommendation data-based heterogeneous graphs, are not fully exploited. To explore recommendation-specific auxiliary tasks, we first quantitatively analyze the heterogeneous interaction data and find a strong positive correlation between the interactions and the number of user-item paths induced by meta-paths. Based on the finding, we design two auxiliary tasks that are tightly coupled with the target task (one is predictive and the other one is contrastive) towards connecting recommendation with the self-supervision signals hiding in the positive correlation. Finally, a model-agnostic DUal-Auxiliary Learning (DUAL) framework which unifies the SSL and recommendation tasks is developed. The extensive experiments conducted on three real-world datasets demonstrate that DUAL can significantly improve recommendation, reaching the state-of-the-art performance.
Submission history
From: Yinghui Tao [view email][v1] Tue, 8 Mar 2022 10:15:12 UTC (1,225 KB)
[v2] Sat, 23 Jul 2022 06:27:07 UTC (1,578 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.