Computer Science > Machine Learning
[Submitted on 30 Mar 2022 (v1), last revised 22 Mar 2024 (this version, v3)]
Title:BBE-LSWCM: A Bootstrapped Ensemble of Long and Short Window Clickstream Models
View PDF HTML (experimental)Abstract:We consider the problem of developing a clickstream modeling framework for real-time customer event prediction problems in SaaS products like QBO. We develop a low-latency, cost-effective, and robust ensemble architecture (BBE-LSWCM), which combines both aggregated user behavior data from a longer historical window (e.g., over the last few weeks) as well as user activities over a short window in recent-past (e.g., in the current session). As compared to other baseline approaches, we demonstrate the superior performance of the proposed method for two important real-time event prediction problems: subscription cancellation and intended task detection for QBO subscribers. Finally, we present details of the live deployment and results from online experiments in QBO.
Submission history
From: Arnab Chakraborty [view email][v1] Wed, 30 Mar 2022 08:56:14 UTC (2,569 KB)
[v2] Mon, 20 Jun 2022 02:04:07 UTC (1 KB) (withdrawn)
[v3] Fri, 22 Mar 2024 09:14:22 UTC (3,379 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.