Computer Science > Programming Languages
[Submitted on 2 Apr 2022 (v1), last revised 7 Apr 2022 (this version, v2)]
Title:Differential Cost Analysis with Simultaneous Potentials and Anti-potentials
View PDFAbstract:We present a novel approach to differential cost analysis that, given a program revision, attempts to statically bound the difference in resource usage, or cost, between the two program versions. Differential cost analysis is particularly interesting because of the many compelling applications for it, such as detecting resource-use regressions at code-review time or proving the absence of certain side-channel vulnerabilities. One prior approach to differential cost analysis is to apply relational reasoning that conceptually constructs a product program on which one can over-approximate the difference in costs between the two program versions. However, a significant challenge in any relational approach is effectively aligning the program versions to get precise results. In this paper, our key insight is that we can avoid the need for and the limitations of program alignment if, instead, we bound the difference of two cost-bound summaries rather than directly bounding the concrete cost difference. In particular, our method computes a threshold value for the maximal difference in cost between two program versions simultaneously using two kinds of cost-bound summaries -- a potential function that evaluates to an upper bound for the cost incurred in the first program and an anti-potential function that evaluates to a lower bound for the cost incurred in the second. Our method has a number of desirable properties: it can be fully automated, it allows optimizing the threshold value on relative cost, it is suitable for programs that are not syntactically similar, and it supports non-determinism. We have evaluated an implementation of our approach on a number of program pairs collected from the literature, and we find that our method computes tight threshold values on relative cost in most examples.
Submission history
From: Đorđe Žikelić [view email][v1] Sat, 2 Apr 2022 14:32:03 UTC (516 KB)
[v2] Thu, 7 Apr 2022 06:47:31 UTC (516 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.