Computer Science > Computational Geometry
[Submitted on 3 Apr 2022]
Title:Force-directed algorithms for schematic drawings and placement: A survey
View PDFAbstract:Force-directed algorithms have been developed over the last 50 years and used in many application fields, including information visualisation, biological network visualisation, sensor networks, routing algorithms, scheduling, and graph drawing. Our survey provides a comprehensive summary of developments and a full roadmap for state-of-the-art force-directed algorithms in schematic drawings and placement. We classified the model of force-directed algorithms into classical and hybrid. The classical force-directed algorithms are further classified as follows: (a) accumulated force models, (b) energy function minimisation models and (c) combinatorial optimisation models. The hybrid force-directed algorithms are classified as follows: (a) parallel and hardware accelerated models, (b) multilevel force-directed models and (c) multidimensional scaling force-directed algorithms. Five categories of application domains in which force-directed algorithms have been adopted for schematic drawings and placement are also summarised: (a) aesthetic drawings for general networks, (b) component placement and scheduling in high-level synthesis of very-large-scale integration circuits design, (c) information visualisation, (d) biological network visualisation and (e) node placement and localisation for sensor networks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.