Mathematics > Numerical Analysis
[Submitted on 3 Apr 2022]
Title:A Weak Galerkin Mixed Finite Element Method for second order elliptic equations on 2D Curved Domains
View PDFAbstract:This article concerns the weak Galerkin mixed finite element method (WG-MFEM) for second order elliptic equations on 2D domains with curved boundary. The Neumann boundary condition is considered since it becomes the essential boundary condition in this case. It is well-known that the discrepancy between the curved physical domain and the polygonal approximation domain leads to a loss of accuracy for discretization with polynomial order $\alpha>1$. The purpose of this paper is two-fold. First, we present a detailed error analysis of the original WG-MFEM for solving problems on curved domains, which exhibits an $O(h^{1/2})$ convergence for all $\alpha\ge 1$. It is a little surprising to see that even the lowest-order WG-MFEM ($\alpha=1$) experiences a loss of accuracy. This is different from known results for the finite element method (FEM) or the mixed FEM, and appears to be a combined effect of the WG-MFEM design and the fact that the outward normal vector on the polygonal approximation domain is different from the one on the curved domain. Second, we propose a remedy to bring the approximation rate back to optimal by employing two techniques. One is a specially designed boundary correction technique. The other is to take full advantage of the nice feature that weak Galerkin discretization can be defined on polygonal meshes, which allows the curved boundary to be better approximated by multiple short edges without increasing the total number of mesh elements. Rigorous analysis shows that a combination of the above two techniques renders optimal convergence for all $\alpha$. Numerical results further confirm this conclusion.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.