Computer Science > Computational Engineering, Finance, and Science
[Submitted on 5 Apr 2022]
Title:Quadratic Approximation Manifold for Mitigating the Kolmogorov Barrier in Nonlinear Projection-Based Model Order Reduction
View PDFAbstract:A quadratic approximation manifold is presented for performing nonlinear, projection-based, model order reduction (PMOR). It constitutes a departure from the traditional affine subspace approximation that is aimed at mitigating the Kolmogorov barrier for nonlinear PMOR, particularly for convection-dominated transport problems. It builds on the data-driven approach underlying the traditional construction of projection-based reduced-order models (PROMs); is application-independent; is linearization-free; and therefore is robust for highly nonlinear problems. Most importantly, this approximation leads to quadratic PROMs that deliver the same accuracy as their traditional counterparts using however a much smaller dimension -- typically, $n_2 \sim \sqrt n_1$, where $n_2$ and $n_1$ denote the dimensions of the quadratic and traditional PROMs, respectively. The computational advantages of the proposed high-order approach to nonlinear PMOR over the traditional approach are highlighted for the detached-eddy simulation-based prediction of the Ahmed body turbulent wake flow, which is a popular CFD benchmark problem in the automotive industry. For a fixed accuracy level, these advantages include: a reduction of the total offline computational cost by a factor greater than five; a reduction of its online wall clock time by a factor greater than 32; and a reduction of the wall clock time of the underlying high-dimensional model by a factor greater than two orders of magnitude.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.